关闭

机器学习xgboost实战—手写数字识别

1、xgboost 安装 安装问题这里就不再做赘述,可参考前面写的博文: http://blog.csdn.net/eddy_zheng/article/details/50184563 2、手写数字识别 这里先说明下,xgboost用作手写字符的分类效果并不是最好的,这里仅仅作为一个教学的实例。本文中用的数据集来自kaggle 的新手入门数字识别(https://www.kag...
阅读(17) 评论(0)

XGBoost4J: Portable Distributed XGBoost in Spark, Flink and Dataflow

Introduction On March 2016, we released the first version of XGBoost4J, which is a set of packages providing Java/Scala interfaces of XGBoost and the integration with prevalent JVM-based distribute...
阅读(14) 评论(0)

升级Cmake

使用源码安装cmake,当然,如果你需要更高版本,需要修改命令。 cmake source install as follows: 0 cd ~ 1 wget https://cmake.org/files/v3.5/cmake-3.5.2.tar.gz 2 tar xvf cmake-3.5.2.tar.gz This worked for me  then: 3 cd cmak...
阅读(19) 评论(0)

Ubuntu16.04 安装xgboost(anaconda3)

首先安装anaconda3,这个没什么好说的 之后需要先升级下anaconda3,命令'conda install libgcc' 最后就是安装xgboost了,命令pip install xgboost 有问题的话https://github.com/dmlc/xgboost/issues/1946这个网址查查看...
阅读(18) 评论(0)

##########(好好好)xgboost原理########

版权声明:如需转载,请注明出处http://blog.csdn.net/a819825294 目录(?)[-] 序xgboost vs gbdt原理自定义损失函数指定gradhessXgboost调参工程实现优化代码走读pythonR对于xgboost的简单使用xgboost中比较重要的参数介绍DARTcsr_matrix训练XGBoostTip参考文献 ...
阅读(67) 评论(0)

python-Pandas学习 如何对数据集随机抽样?

摘要:有时候我们只需要数据集中的一部分,并不需要全部的数据。这个时候我们就要对数据集进行随机的抽样。pandas中自带有抽样的方法。 应用场景: 我有10W行数据,每一行都11列的属性。 现在,我们只需要随机抽取其中的2W行。 实现方法很简单: 利用Pandas库中的sample。 DataFrame.sample(n=None, frac=None...
阅读(76) 评论(0)

tensorflow常用函数及概念

命令式编程与声明式编程 命令式编程(imperative programming):每个语句都按原来的意思执行,可以精确控制行为。通常可以无缝的和主语言交互,方便的利用主语言的各类算法,工具包,bug和性能调试器。缺点是实现统一的辅助函数困和提供整体优化都很困难。比如numpy和Torch。  声明式语言(declarative programing):用户只需要声明要做什么,而具体执行则...
阅读(44) 评论(0)

hive索引简单使用介绍

索引是标准的数据库技术,hive 0.7版本之后支持索引。hive索引采用的不是'one size fites all'的索引实现方式,而是提供插入式接口,并且提供一个具体的索引实现作为参考。 hive索引具有以下特点: 1.索引key冗余存储,提供基于key的数据视图 2.存储设计以优化查询&检索性能 3.对于某些查询减少IO,从而提高性能。 hive索引创建语句: ...
阅读(30) 评论(0)

CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?

一、深度学习: 深度学习是机器学习的一个分支。可以理解为具有多层结构的模型。 二、基本模型: 给大家总结一下深度学习里面的基本模型。我将这些模型大致分为了这几类:多层感知机模型;深度神经网络模型和递归神经网络模型。 2.1 多层感知机模型(也就是你这里说的深度神经网络): 2.1.1 Stacked Auto-Encoder堆叠自编码器 堆叠自编码器是一种最基础的深度学习模型,该模...
阅读(67) 评论(0)

数十种TensorFlow实现案例汇集:代码+笔记

这是使用 TensorFlow 实现流行的机器学习算法的教程汇集。本汇集的目标是让读者可以轻松通过案例深入 TensorFlow。 这些案例适合那些想要清晰简明的 TensorFlow 实现案例的初学者。本教程还包含了笔记和带有注解的代码。 项目地址:https://github.com/aymericdamien/TensorFlow-Examples 教程索引 0 - ...
阅读(155) 评论(0)

对抗神经网络之对抗卷积神经网络[2]

Abstract 上一篇博文[1]简单介绍了对抗网络的理论和大概流程。其中所谓的对抗网络可以归结为unsupervised learning 或者 generative model。从无监督学习来进行feature representation,有k-means聚类算法,auto-encoders[2],以及09年的Deep belief networks等等。从生成模型的角度来说,我们需要...
阅读(58) 评论(0)

Python2.x与3​​.x版本区别

Python的3.0版本,常被称为Python 3000,或简称Py3k。相对于Python的早期版本,这是一个较大的升级。 为了不带入过多的累赘,Python 3.0在设计的时候没有考虑向下相容。 许多针对早期Python版本设计的程式都无法在Python 3.0上正常执行。 为了照顾现有程式,Python 2.6作为一个过渡版本,基本使用了Python 2.x的语法和库,同时考虑了向Py...
阅读(47) 评论(0)

python进阶必读汇总

前言 昨天翻到了一本在github开源的书: Intermediate Python. 就有了此文, 梳理了一下一些之前翻到的对Python语言细节点的答案, 博文等. 英文的 super Python’s super() considered super! rhettinger是python核心开发者. 这篇博文也是讲super最好最深入的博文了. 装...
阅读(57) 评论(0)

第十一讲.异常检测

本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。内容大多来自Standford公开课machine learning中...
阅读(59) 评论(0)

异常检测算法--Isolation Forest

南大周志华老师在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结。 iTree   提到森林,自然少不了树,毕竟森林都是由树构成的,看Isolation Forest(简称iForest)前,我们先来看看Isolation Tree(简称iTree)是怎么构成的,iTree是...
阅读(58) 评论(0)
709条 共48页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:454952次
    • 积分:7168
    • 等级:
    • 排名:第3238名
    • 原创:182篇
    • 转载:517篇
    • 译文:7篇
    • 评论:39条
    最新评论