推荐算法
文章平均质量分 89
mishidemudong
菜鸟上路,一颗红心,两手准备。
展开
-
腾讯内容处理和分发中的算法应用探究
近期,腾讯PCG新闻产品技术部算法中心李彪应邀来到腾讯媒体研究院作内部分享,详细梳理了算法应用产品场景,以下为部分内容实录。今天我跟大家分享的主题是算法赋能的内容处理和分发,重点讲一下内容处理。开始之前,先介绍一下算法在腾讯新闻的应用场景。第一个,腾讯新闻APP中各种内容形态(如图文、视频、音频、话题、问答等)的理解和分发,涉及推荐系统,以及AI算法赋能内容的运营。第二个,将腾讯新闻推送到微信,每次一个大图和三条新闻资讯,一共四条,点进去有些底层页能跳转到腾讯新闻APP。第三个,海豚智音转载 2021-10-12 18:35:41 · 738 阅读 · 0 评论 -
###好好好###今日头条推荐算法原理全文详解
本次分享将主要介绍今日头条推荐系统概览以及内容分析、用户标签、评估分析,内容安全等原理。一、系统概览推荐系统,如果用形式化的方式去描述实际上是拟合一个用户对内容满意度的函数,这个函数需要输入三个维度的变量。第一个维度是内容。头条现在已经是一个综合内容平台,图文、视频、UGC小视频、问答、微头条,每种内容有很多自己的特征,需要考虑怎样提取不同内容类型的特征做好推荐。第二个维度是用户特征。包括各种兴趣标签,职业、年龄、性别等,还有很多模型刻划出的隐式用户兴趣等。第三个维度是环境特征。这是移动转载 2021-10-12 14:49:49 · 763 阅读 · 0 评论 -
基于上下文的推荐 -- 包括时间衰减算法和位置推荐算法(代码实现)
基于上下文的推荐 基于时间特征的推荐 时间衰减 基于时间衰减的ItemCF算法 算法核心两部分,都加入了时间衰减项 以movielens数据集实现ItemCF 基于时间衰减的UserCF算法 以movielens数据集实现UserCF 基于地点和热度推荐 原理(包含三种数据集)...转载 2021-08-23 10:56:57 · 1622 阅读 · 0 评论 -
###好好好#####BOOM!推荐系统遇上多模态信息
推荐已经成为许多在线内容共享服务的核心组成部分,从图像、博客公众号、音乐推荐、短视频推荐等等。与传统推荐不一样的地方,就是这些项目内容包含着丰富的多媒体信息-帧、音轨和描述,涉及多种形式的视觉、声学和文本信息。「那么如此丰富的多媒体、多模态信息如何融合到推荐中呢?」最普通也是最直接的方式可能就是对多模态抽特征,然后多模态融合直接作为side Information或者item的representation之后参与到推荐中的。本篇博文主要整理三篇整合多模态信息到表示中的文章,一篇是通用的融合结果,转载 2021-08-11 11:52:22 · 376 阅读 · 0 评论 -
【干货】今日头条的新闻推荐算法原理
信息越来越海量,用户获取信息越来越茫然,而推荐算法则能有助于更好的匹配海量内容和用户需求,使之更加的“有的放矢” 。为让产业各方更好的了解算法分发的相关技术和原理,我们特整理了当下最具影响力的平台的相关干货,和各方分享。本期微信,我们将推荐影视类的Netflix和新闻类的今日头条的算法技术。今天,算法分发已经是信息平台、搜索引擎、浏览器、社交软件等几乎所有软件的标配,但同时,算法也开始面临质疑、挑战和误解。今日头条的推荐算法,从2012年9月第一版开发运行至今,已经经过四次大的调整和修改。今日头条转载 2021-08-02 16:33:22 · 6495 阅读 · 0 评论 -
####好好好######AAAI2021推荐系统论文清单
2021年第35届人工智能顶级会议AAAI论文列表已经放出,此次会议共收到9034篇论文提交,其中有效审稿为7911篇,最终录取篇数为1692篇,录取率为21.4%。由于境外疫情形势依然严峻,大会将在2月2日到2月9日在线上进行举办。较之去年接收篇数1590篇来说,今年的录取数量有所提升。通过对今年所接收的全部论文的标题进行分析,发现以下结论: 深度学习技术依然是目前来看比较火热的技术之一; 图结构数据(网络/知识图谱)依然是大家比较关注的数据形式之一; 强化学习/对抗学习...转载 2021-06-14 18:26:33 · 489 阅读 · 0 评论 -
###好好好###############基于图模型的智能推荐(含知识图谱/图神经网络)
目录一、基于知识图谱的智能推荐 1. 基于embedding的方法 2. 基于path的方法 3. 联合方法 4.结合知识图谱特征学习的推荐系统分类 二、基于图网络的智能推荐(写完发现等于介绍了一遍图网络!) 1. 知识图谱表示学习KGE与图网络表示学习的异同点 2. 图网络表示学习(network representation/embedding) 3. 图神经网络 三、知识图谱与图神经网络的相关问题探究 1.图神经网络是如何处理类似知识图谱的有向异构图的?..转载 2021-05-27 16:01:23 · 733 阅读 · 0 评论 -
pyspark+DSSM做大规模道具商品个性化推荐模型训练
背景:需要从大量道具中检索出用户喜欢的道具,出于隐私保护代码中隐去了使用到的具体特征,整个流程是可以跑通的,实际使用时可以根据需要增加相应的early stopping,BN,数据采样等操作。环境设置:deepmatch==0.1.3,deepctr[GPU]==0.7.5,pyspark==2.4.0,keras模型文件: import pandas as pd import numpy as np import tensorflow as tf from ten...转载 2021-05-25 10:57:36 · 811 阅读 · 0 评论 -
transformer预测过程_Transformer在推荐模型中的应用总结
最近基于transformer的一些NLP模型很火(比如BERT,GPT-2等),因此将transformer模型引入到推荐算法中是近期的一个潮流。transformer比起传统的LSTM、GRU等模型,可以更好地建模用户的行为序列。本文主要整理transformer在推荐模型中的一些应用。1. Self-Attentive Sequential Recommendation模型结构:b68d167ca5f3fd1b762102a575f006f3.png方法:符号定义:bbf5147转载 2021-05-19 10:45:25 · 1670 阅读 · 0 评论 -
【重磅推出】推荐系统系列教程之九:解密“看了又看”和“买了又买”(Item-Based)...
编者按:之前推出了《推荐系统系列教程》,反响不错,前面已经推出了八期,今天按约推出第九期:解密“看了又看”和“买了又买”(基于物品的协同过滤)。希望朋友们多点“在看”,多多转发,我会在“在看”数超过20后推出下一篇教程。不管你有没有剁过手,你对“看了这个商品的还看了”这样的推荐形式一定不陌生。无论是猫还是狗,或者是其他电商网站,这样的推荐产品可以说是推荐系统的标配了。类似的还有,如点评标记类网站的“喜欢了这部电影的还喜欢了”,社交媒体网站的“关注了这个人还关注了”,这些...转载 2021-05-18 16:36:22 · 264 阅读 · 0 评论 -
五分钟了解信息流推荐咨询推荐
前些日子听了 @kevin 同学的知乎 live《了解信息流产品和内容推荐算法》,很有收获(可以在外行前装一装了 ????)。鉴于两小时的 live 信息量很大,就做了份笔记,把其中最有价值的部分做成了图解,应该算得上是「干货」了。不过, 5 分钟能读完的小文,到底只是走马观花而已。倘若读完真的感兴趣,还是建议去听 live,毕竟就其内容质量而言,9.99 元是真的值。什么是信息流产品信息流产品每个使用新闻客户端的用户,都多少接触过的信息流这种产品形态。它有以下诸多特点:海量信息,能转载 2021-05-04 10:47:34 · 548 阅读 · 0 评论 -
KDD 2020 | 会话推荐系统新进展:基于互信息最大化的多知识图谱语义融合
论文标题: Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion论文来源: ACM SIGKDD 2020论文链接: https://arxiv.org/abs/2007.04032会话推荐系统(conversation recommender system, CRS)旨在通过交互式的会话给用户推荐高质量的商品。通常CRS由寻求商品的user和推荐商品的system组成,通..转载 2021-04-01 15:17:21 · 496 阅读 · 0 评论 -
基于知识图谱的推荐系统(KGRS)综述
导语 本文是2020年针对知识图谱作为辅助信息用于推荐系统的一篇综述。知识图谱对于推荐系统不仅能够进行更精确的个性化推荐,而且对推荐也是具有可解释性的,有迹可循。 本文汇总了近些年来知识图谱辅助推荐系统的一些研究工作,并按不同的方法进行划分类别(下图是我根据论文画出的大纲方法类别图);除此之外,汇总了不同场景下的知识图谱数据集,涵盖7个场景;最后阐述了未来的一些可研究方向及趋势。 ...转载 2021-03-10 09:47:30 · 16260 阅读 · 1 评论 -
KDD 2020 | 会话推荐系统新进展:基于互信息最大化的多知识图谱语义融合
论文标题: Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fusion论文来源: ACM SIGKDD 2020论文链接: https://arxiv.org/abs/2007.04032会话推荐系统(conversation recommender system, CRS)旨在通过交互式的会话给用户推荐高质量的商品。通常CRS由寻求商品的user和推荐商品的system组成,通..转载 2021-01-19 09:47:42 · 1015 阅读 · 0 评论 -
###好好好###ACL 2020 | 新任务:融合多个对话类型的对话式推荐
本文对百度入选ACL 2020的论文《Towards Conversational Recommendation over Multi-Type Dialogs》进行解读,该论文提出了一个新对话任务:融合多个对话类型的对话式推荐。本论文地址:https://arxiv.org/pdf/2005.03954.pdf建议大家点击阅读以下文章,以更加了解人机对话技术:一文看懂人机对话:https://mp.weixin.qq.com/s/fkcZOVJUreZqj7aQBkslog动机人机对转载 2020-12-30 10:40:25 · 269 阅读 · 0 评论 -
####好好好#####ACL 2020 | 新任务:融合多个对话类型的对话式推荐
欢迎关注百度自然语言处理官方公众号 【百度NLP】 ,及时获取业界最新技术进展!!!阅读原文:https://mp.weixin.qq.com/s/f3dCOc4Mog9eZTl0k5YQew本文对百度入选ACL 2020的论文《Towards Conversational Recommendation over Multi-Type Dialogs》进行解读,该论文提出了一个新对话任务:融合多个对话类型的对话式推荐。本论文地址:https://arxiv.org/pdf/2005.03954转载 2020-12-11 17:30:37 · 281 阅读 · 1 评论 -
####好好好#####知识图谱上的双塔召回:阿里的IntentGC模型
关注本人的同学可能发现,我最近点评的文章都是关于"GNN在推荐系统应用"方向的。这当然与现如今这个方向非常火有关,但是作为一个合格的炼丹师+调参侠,总要搞清楚一门技术为什么火?这么火的技术对于自己是否有用?根据我的理解,由“传统机器学习→深度学习→图计算或知识图谱”这一路下来的发展脉络如下: 一切技术的目标都是为了更好地“伺候”好“推荐系统的一等公民 — ID类特征”。用户购买过的商品、光顾过的店铺、搜索过的关键词、商品的分类与标签,都是这样的ID类特征 传统的机器学习只会“严格匹配”。用户转载 2020-12-10 15:28:44 · 549 阅读 · 0 评论 -
知识蒸馏与推荐系统
「写在前面:」 这是一篇介绍 「【知识蒸馏】」 在 「【推荐系统】」领域应用的文章,算是知识蒸馏简述系列文章的延续,希望能对推荐领域的同学有所帮助。以下是本文的主要框架: A brief review KD & 推荐 Conclusion 「1. A brief review」「1-1 知识蒸馏回顾」当我们训练一个深度学习模型时,常常面临模型效果与工程性能冲突的问题。在监督学习中: 训练模型时,通常采用 「复杂模型」 或者 「Ensemble」 方转载 2020-09-04 17:55:47 · 926 阅读 · 0 评论 -
###豪豪豪豪######2020 推荐系统技术演进趋势了解
读知乎文章《推荐系统技术演进趋势:从召回到排序再到重排》笔记:《推荐系统技术演进趋势:从召回到排序再到重排》这篇文章主要说了下最近两年,推荐系统技术的一些比较明显的技术发展趋势。主要从以下几个方面介绍:推荐系统整体架构召回技术演进趋势排序模型技术演进趋势重排技术演进趋势一、推荐系统整体架构推荐系统宏观架构:推荐系统宏观结构细分四阶段:推荐系统细分四阶段二、召回技术演进趋势1、传统:多路召回(每一路召回相当于单特征排序结果)传统召回2、未来:转载 2020-07-06 20:05:09 · 612 阅读 · 0 评论 -
###好好好##知识图谱与推荐系统
文章目录 知识图谱与个性化推荐 1、推荐系统的任务和难点 2、知识图谱的优势 3、知识图谱与推荐系统的结合方法 3.1 基于特征的推荐方法 3.2 基于路径的推荐方法 3.3 知识图谱特征学习(Knowledge Graph Embedding) 4、结...转载 2020-03-04 18:45:00 · 449 阅读 · 0 评论 -
####haohaohaohao#####爱奇艺个性化推荐排序实践
作者|Michael作者介绍Michael,推荐算法助理研究员,2014年硕士毕业于北京邮电大学后加入爱奇艺。从事推荐算法的研发和管理工作,对于机器学习和深度学习在推荐上的应用有着丰富的经验。请输入标题 abcdefg导 读在当前这个移动互联网时代,除了专业内容的丰富,UGC内容更是爆发式发展,每个用户既是内容的消费者,也成为了内容的创造者。这些海量的内容在满...转载 2020-03-04 18:20:12 · 274 阅读 · 0 评论 -
论文阅读 KGAT: Knowledge Graph Attention Network for Recommendation
在这里插入图片描述1. Motivation如何将side information和用户-物品二部图考虑在一起给用户提供准确、多样和可解释的推荐是非常有必要的。目前基于CF的方法并不能很好的对用户和物品的side information进行建模,这样就不可避免的面临数据稀疏性的问题。工业界的解决办法是使用监督学习模型,比如FM,NFM,wide&deep等方法去将用户物品的所有sid...转载 2020-02-25 18:57:56 · 1734 阅读 · 0 评论 -
论文细细品读----KGAT : Knowledge Graph Attention Network for Recommendation
0 ABSTRACT在推荐系统领域中,为了使推荐结果更加准确、可解释性更高,不仅要考虑user-item之间的关系,引入外部知识丰富user-item之间的信息也非常有必要。在这方面比较常用的方法主要有FM算法(factorization machine,因子分解机),该方法主要问题在于将user-item作为相互独立的实例,忽视了item之间可能存在的相互作用关系。本文提出了一种基于知识...转载 2020-02-25 18:52:55 · 6288 阅读 · 4 评论 -
3亿会员、4亿商品,深度学习在大型电商商品推荐的应用实践!
常见算法套路电商品推荐中的常见算法大致如下:基于商品相似度比如食物 A 和食物 B,根据它们的价格、味道、保质期、品牌等维度,可以计算它们的相似程度,可以想象,我买了包子,很有可能顺路带一盒水饺回家。优点:冷启动,只要你有商品的数据,在业务初期用户数据不多的情况下,也可以做推荐。缺点:预处理复杂,任何一件商品,维度可以说至少可以上百,如何选取合适的维度进行计算,涉及到工程经...转载 2019-11-05 14:53:59 · 651 阅读 · 0 评论 -
详细阐述:由点及面的CRM认知
未来商业都是要围绕着人展开的,广义的讲所有业务的产品都可以纳入CRM,CRM将是各大平台或商家适应未来商业环境的基础标配。那么我们该怎样完整认知CRM呢?随着国内互联网的发展,中产阶级崛起和消费升级,未来的服务是贴近生活,贴近人的,未来的商业是需要基于人更加精细化区隔耕作的。如何区分和发掘不同用户身上的价值?如何维系稳定且活跃的用户关系?如何在竞争中稳定发展并持续提升品牌壁垒……这...转载 2018-09-06 11:56:09 · 322 阅读 · 0 评论 -
用户画像感性认识一
什么是用户画像?简而言之,用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。举例来说,如果你经常购买一些玩偶玩具,那么电商网站即可根据玩具购买的情况替你打上标签“有孩子”,甚至还可以判断出你孩子大概的年龄,贴上“有5-10岁的孩子”这样更为具体的标签,而这些转载 2016-11-16 17:07:18 · 4884 阅读 · 0 评论