关闭

python开发工具Jupyter Notebook安装

******安装Jupyter Notebook****** 12 第一步:安装ipython,安装完成后输入ipython,如下图,输入exit可退出      pip install ipython  第二步:安装jupyter       pip install jupyter 第三步:配置环境,通过远程方式访问jupyter notebook   ...
阅读(6) 评论(0)

xgboost原理及应用

1.背景    关于xgboost的原理网络上的资源很少,大多数还停留在应用层面,本文通过学习陈天奇博士的PPT地址和xgboost导读和实战 地址,希望对xgboost原理进行深入理解。 2.xgboost vs gbdt    说到xgboost,不得不说gbdt。了解gbdt可以看我这篇文章 地址,gbdt无论在理论推导还是在应用场景实践都是相当完美的,但有一个问题:第n颗...
阅读(9) 评论(0)

机器学习中的各种距离

在做分类时常常需要估算不同样本之间的相似性(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。 采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否。 本文的目的就是对常用的相似性度量作一个总结。 本文目录: 1. 欧氏距离 2. 曼哈顿距离 3. 切比雪夫距离 4. 闵可夫斯基距离 ...
阅读(12) 评论(0)

Neo4j数据库基础

1、Neo4j简介 可能很多同学之前没有接触过图数据库,Neo4j就是一个图数据库,首先对Neo4j做一个初步的介绍:  Neo4j是一个——面向网络的数据库——基于磁盘的、具备完全的事务特性的Java持久化引擎,但是它将结构化数据存储在网络上而不是表中。网络(从数学角度叫做图)是一个灵活的数据结构,可以应用更加敏捷和快速的开发模式。 2、Neo4j基本特点 它有以下一些基本特...
阅读(31) 评论(0)

图形数据库的优势是什么,Neo4j

最近在抓取一些社交网站的数据,抓下来的数据用MySql存储。问我为什么用MySql,那自然是入门简单,并且我当时只熟悉MySql。可是,随着数据量越来越大,有一个问题始终困扰着我,那就是社交关系的存储。     就以新浪微博举例,一个大V少则十几万,多则几千万的粉丝,这些关注关系要怎么存呢?在MySql中,一条关注关系(大V id,大V的一个粉丝 id)存为一条数据,那么当用户数量上来的时候...
阅读(27) 评论(0)

统计学习:正则化与交叉验证

1. 正则化 模型选择的经典方法是正则化(regularization)。正规化是结构风险最小化策略的实现,是在经验风险上加一个正则化项(regularizer)或罚项(penalty term)。正则化一般是模型复杂度的单调递增函数,模型越复杂,正则化值就越大。比如,正则化项可以是模型参数向量的范数。  正则化一般具有如下形式  minfϵΓ1N∑i=1NL(yi,f(xi))...
阅读(38) 评论(0)

深度学习(图像处理)A Neural Algorithm of Artistic Style 图像风格转换 - keras简化版实现

前言 深度学习是最近比较热的词语。说到深度学习的应用,第一个想到的就是Prisma App的图像风格转换。既然感兴趣就直接开始干,读了论文,一知半解;看了别人的源码,才算大概了解的具体的实现,也惊叹别人的奇思妙想。 声明 代码主要学习了【titu1994/Neural-Style-Transfer】的代码,算是该项目部分的简化版或者删减版。这里做代码的注解和解释,也作为一个小玩具...
阅读(54) 评论(0)

深度学习(图像处理): A neural algorithm of artistic style算法详解

Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. “A neural algorithm of artistic style.” arXiv preprint arXiv:1508.06576 (2015). 下面这篇发表于CVPR16,内容类似,排版更便于阅读。 Gatys, Leon A., Alexander...
阅读(24) 评论(0)

池化函数(Pooling Function)

1. 池化(Pooling)概念 在神经网络中,池化函数(Pooling Function)一般在卷积函数的下一层。在经过卷积层提取特征之后,得到的特征图代表了  比  像素   更高级的特征,已经可以交给 分类器 进行训练分类了。但是我们 每一组卷积核  都生成 一副与原图像素相同大小的  卷积图,节点数一点没少。如果使用了 多个卷积核  还会使得通道数比之前多的多!我靠,这维度...
阅读(33) 评论(0)

tensorflow:批标准化(Bacth Normalization,BN)

统计机器学习中有一个经典的假设:Source Domain 和 Target Domain的数据分布是一致的。也就是说,训练数据和测试数...
阅读(112) 评论(0)

tensorflow:激活函数(Activation Function)

激活函数(Activation Function)运行时激活神经网络中某一部分神经元,将激活信息向后传入下一层的神经网络。 神经网络的数学基础是处处可微的,所以选取激活函数要保证数据输入与输出也是可微的。TensorFlow中提供哪些激活函数的API。 激活函数不会改变数据的维度,也就是输入和输出的维度是相同的。TensorFlow中有如下激活函数: 1. sigmoid 函数 这...
阅读(77) 评论(0)

tensorflow:卷积函数----tf.nn.conv2d

1. 卷积概念 卷积的过程:如下图所示,用一个3*3的卷积核在5*5的图像上做卷积的过程。 卷积核如下,大小3*3,在原图上滑动的步长为1。(求解过程是:对应位置相成,然后相加) 我们再看一个在三通道图像上的卷积过程,如下: 计算步骤解释如下,原图大小为7*7,通道数为3:,卷积核大小为3*3,Input Volume中的蓝色方框和Filter...
阅读(42) 评论(0)

机器学习——K-近邻(KNN)算法

一 . K-近邻算法(KNN)概述      最简单最初级的分类器是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配时,便可以对其进行分类。但是怎么可能所有测试对象都会找到与之完全匹配的训练对象呢,其次就是存在一个测试对象同时与多个训练对象匹配,导致一个训练对象被分到了多个类的问题,基于这些问题呢,就产生了KNN。      KNN是通过测量不同特征...
阅读(73) 评论(0)

深度学习中常见分布-正态分布和伽玛分布

正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。 若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为: X∼N(μ,σ2), 则其概率密度函数为 正态分布的期望值μ决定了其位置,其标准差σ决定了分布的...
阅读(312) 评论(0)

tensorflow的类、变量和函数讲解

一、概览 我们学任何一门编程语言的时候,都会讲一些量的操作,因为这是基本。这节的主要任务就是熟悉最基本的一些量怎么来定义。 先列出来,然后一个一个细讲。 类: 1.Tensor  2.Variable 函数 1.constant()  2.初始化变量的一些函数  3.placeholder() 二、类讲解 Tensor(tf.Tens...
阅读(106) 评论(0)

如何用 Tensorflow 搭建神经网络-了解神经网络基本概念

本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的, 讲的很好,浅显易懂,入门首选, 而且在github有代码, 想看视频的也可以去他的优酷里的频道找。 Tensorflow 官网 神经网络是一种数学模型,是存在于计算机的神经系统,由大量的神经元相连接并进行计算,在外界信息的基础上,改变内部的结构,常用来对输入和输出间复杂的关系进行建模。 神经网络由大量的节点和之...
阅读(74) 评论(0)

matplotlib基础教程(1)

前言:matplotlib是一个Python的第三方库,里面的pyplot可以用来作图。下面来学习一下如何使用它的资源。 一、使用前 首先在python中使用任何第三方库时,都必须先将其引入。即: import matplotlib.pyplot as plt11 或者: from matplotlib.pyplot import *11 二、用法 1.建立空白图...
阅读(58) 评论(0)

python之pandas的基本使用(2)

一、排序和排名 排序:sort_index和sort_values函数 代码示例: print 'Series排序' x = Series(range(4), index = ['b', 'a', 'c', 'd']) print x.sort_index() # Series按索引排序 ''' a 1 b 0 c 2 d 3 ''' print x....
阅读(52) 评论(0)

python之pandas的基本使用(1)

一、pandas概述 pandas :pannel data analysis(面板数据分析)。pandas是基于numpy构建的,为时间序列分析提供了很好的支持。pandas中有两个主要的数据结构,一个是Series,另一个是DataFrame。 二、数据结构 Series Series 类似于一维数组与字典(map)数据结构的结合。它由一组数据和一组与数据相对应的数据标签(索...
阅读(44) 评论(0)

Numpy基础笔记(2)

一、关于Numpy Numpy是Python第一个矩阵类型,提供了大量矩阵处理的函数。非正式地来说,它是一个使运算更easy,执行速度更快的库,因为它的内部运算是通过C语言实现的。 numpy包含了两种基本的数据类型:矩阵和数组。二者在处理上稍有不同,如果你熟悉MATLAB的话,矩阵的处理不是难事。在使用标准的python时,处理这两种数据类型都需要循环,而在numpy中则可以省略这些...
阅读(50) 评论(0)
787条 共40页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:574640次
    • 积分:9751
    • 等级:
    • 排名:第1932名
    • 原创:357篇
    • 转载:423篇
    • 译文:7篇
    • 评论:47条
    最新评论