极大似然估计和贝叶斯决策详解

本文深入探讨了最大似然估计的原理及其在统计学中的应用,详细解释了如何利用已知样本结果反推最有可能的参数值,是理解概率论在统计学中应用的重要读物。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原博客链接1 :https://blog.csdn.net/zengxiantao1994/article/details/72787849

原博客链接2: https://blog.csdn.net/linyanqing21/article/details/50939009

主要内容:总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。

 原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值