GBDT+LR特征融合的例子

sklearn直接使用.apply即可完成,下面看下简单的例子,GBDT+LR融合后比直接使用GBDT预测,AUC提升了0.004

import pandas as pd

from sklearn.linear_model import LogisticRegression

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.preprocessing import OneHotEncoder


# 导入数据

X = pd.read_table('vecs_new.txt',header=None,sep=',')

y = pd.read_table('labels_new.txt',header=None)


# 切分为测试集和训练集,比例0.5

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

# 将训练集切分为两部分,一部分用于训练GBDT模型,另一部分输入到训练好的GBDT模型生成GBDT特征,然后作为LR的特征。这样分成两部分是为了防止过拟合。

X_train, X_train_lr, y_train, y_train_lr = train_test_split(X_train, y_train, test_size=0.5)


# 弱分类器的数目

n_estimator = 10

# 调用GBDT分类模型

grd = GradientBoostingClassifier(n_estimators=n_estimator)


# 调用one-hot编码。

grd_enc = OneHotEncoder()


# 调用LR分类模型。

grd_lm = LogisticRegression()


#使用X_train训练GBDT模型,后面用此模型构造特征

grd.fit(X_train, y_train)


#直接进行预测,查看AUC得分

y_pred_grd = grd.predict_proba(X_test)[:, 1]

fpr_grd, tpr_grd, _ = metrics.roc_curve(y_test, y_pred_grd)

roc_auc = metrics.auc(fpr_grd, tpr_grd)

print 'predict',roc_auc


# fit one-hot编码器

grd_enc.fit(grd.apply(X_train)[:, :, 0])


#使用训练好的GBDT模型构建特征,然后将特征经过one-hot编码作为新的特征输入到LR模型训练。

grd_lm.fit(grd_enc.transform(grd.apply(X_train_lr)[:, :, 0]), y_train_lr)


# 用训练好的LR模型多X_test做预测

y_pred_grd_lm = grd_lm.predict_proba(grd_enc.transform(grd.apply(X_test)[:, :, 0]))[:, 1]


# 根据预测结果输出

fpr_grd_lm, tpr_grd_lm, _ = metrics.roc_curve(y_test, y_pred_grd_lm)

roc_auc = metrics.auc(fpr_grd_lm, tpr_grd_lm)

print 'predict',roc_auc


print("AUC Score :",(metrics.roc_auc_score(y_test, y_pred_grd_lm)))


参考:
http://blog.csdn.net/xidianliutingting/article/details/53911462
http://blog.csdn.net/lilyth_lilyth/article/details/48032119
http://www.cnblogs.com/wuxiangli/p/7259253.html
http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值