输出绝对值(信息学奥赛一本通-T1040)

本文介绍了一个简单的C++程序,该程序接收一个浮点数作为输入,并输出该数的绝对值,精确到小数点后两位。适用于初学者了解基本的数值处理和格式输出。

【题目描述】

输入一个浮点数,输出这个浮点数的绝对值,保留到小数点后两位。

【输入】

输入一个浮点数,其绝对值不超过10000。

【输出】

输出这个浮点数的绝对值,保留到小数点后两位。

【输入样例】

-3.14

【输出样例】

3.14

【源程序】

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{
    double N;
    cin>>N;
    cout<<setiosflags(ios::fixed)<<setprecision(2);
    if(N>=0) cout<<N<<endl;
    else cout<<-N<<endl;
    return 0;
}

 

### 关于信息学奥赛一本 C++ 题目1281 的解题思路及代码实现 #### 题目描述 题目1281涉及计算两个整数的最大公约数(GCD)和最小公倍数(LCM),并输出这两个数值。 #### 解题思路 为了求解最大公约数,可以采用欧几里得算法。该算法基于这样一个事实:两个整数 \(a\) 和 \(b\) (\(a > b\))的最大公约数等于 \(b\) 和 \(a \% b\) 的最大公约数。对于最小公倍数,则可以过公式 \(\text{LCM}(a, b) = |a * b| / \text{GCD}(a, b)\) 来获得[^3]。 #### 代码实现 下面是一个简单的C++程序来解决这个问题: ```cpp #include <iostream> using namespace std; // 函数用于返回两数的最大公约数 (gcd) int gcd(int a, int b){ if(b == 0) return a; else return gcd(b, a % b); } // 主函数 int main(){ int num1, num2; // 输入两个正整数 cin >> num1 >> num2; // 计算最大公约数 int greatestCommonDivisor = gcd(num1, num2); // 输出最大公约数 cout << "The GCD of " << num1 << " and " << num2 << " is: " << greatestCommonDivisor << endl; // 如果任意一数为零则不计算lcm if(greatestCommonDivisor != 0){ // 使用绝对值防止负数情况下的错误 long leastCommonMultiple = abs((long)(num1) * (long)(num2)) / greatestCommonDivisor; // 输出最小公倍数 cout << "The LCM of " << num1 << " and " << num2 << " is: " << leastCommonMultiple << endl; } return 0; } ``` 此段代码实现了输入一对整数后,先过递归调用来找出它们之间的最大公约数;接着利用上述提到的关系式得出最小公倍数,并打印出来。注意这里处理了当其中一个数字可能为零的情况,在这种情况下不会尝试去寻找最小公倍数因为其定义上不存在意义[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值