题目背景
1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于9的奇数都可以表示成3个质数之和。质数是指除了1和本身之外没有其他约数的数,如2和11都是质数,而6不是质数,因为6除了约数1和6之外还有约数2和3。需要特别说明的是1不是质数。
这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。
从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
题目描述
现在请你编一个程序验证哥德巴赫猜想。
先给出一个奇数n,要求输出3个质数,这3个质数之和等于输入的奇数。
输入输出格式
输入格式:
仅有一行,包含一个正奇数n,其中9<n<20000
输出格式:
仅有一行,输出3个质数,这3个质数之和等于输入的奇数。相邻两个质数之间用一个空格隔开,最后一个质数后面没有空格。如果表示方法不唯一,请输出第一个质数最小的方案,如果第一个质数最小的方案不唯一,请输出第一个质数最小的同时,第二个质数最小的方案。
输入输出样例
输入样例#1:
2009
输出样例#1:
3 3 2003
源代码
#include<iostream>
#include<cmath>
using namespace std;
bool prime(int n)//判断是否是质数的函数
{
int i;
if(n==2) return true;
if(n%2==0) return false;
for(i=3;i<=sqrt(n);i+=2)
if(n%i==0)
return false;
return true;
}
int main()
{
int number;
int a,b;
int flag=0;
cin>>number;//输入奇数
for(a=2;;a++)//寻找第一个数a
{
for(b=a;b<=number-a-b;b++)//寻找第二个数b
{
if( prime(a) && prime(b) && prime(number-a-b) )//判断三个数是否都是质数
{
flag=1;
cout<<a<<" "<<b<<" "<<number-a-b<<endl;//若都是质数,输出
break;//终止内循环
}
}
if(flag==1) break;//终止外循环
}
return 0;
}