区间内的真素数(信息学奥赛一本通-T1411)

本文介绍了一个算法,用于找出两个指定正整数范围内所有的真素数。真素数是指那些本身及其数字逆序均为素数的整数。文章提供了完整的C++实现代码,并详细解释了素数判断及数字逆序的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目描述】

找出正整数M和N之间(N不小于M)的所有真素数。

例如,11,13均为真素数,因为11的反序还是为11,13的反序为31也为素数。

真素数的定义:如果一个正整数P为素数,且其反序也为素数,那么P就为真素数。

【输入】

输入两个数M和N,空格间隔,1≤M≤N≤100000。

【输出】

按从小到大输出M和N之间(包括M和N)的真素数,逗号间隔。如果之间没有真素数,则输出No。

【输入样例】

10 35

【输出样例】

11,13,17,31

【源程序】

#include<iostream>
#include<cmath>
using namespace std;
bool judge(int x);
int inverted(int n);
int a[100000];

int main()
{
    int m,n;
    int i;
    int k=0;
    bool flag=false;

    cin>>m>>n;
    for(i=m; i<=n; i++) //从m枚举到n
        if( judge(i) && judge(inverted(i)) )//分别判断i以及i变换后是否是素数
        {
            k++;
            a[k]=i;
            flag=true;
        }
    if(flag)
    {
        for(i=1; i<k; i++)
            cout<<a[i]<<",";
        cout<<a[k]<<endl;
    }
    else
        cout<<"No"<<endl;
    return 0;
}

bool judge(int x)//判断素数
{
    int i=2;
    if(x==0||x==1)	return false;
    while( i<=floor(sqrt(x)) && (x%i!=0) )
        i++;
    if(i>floor(sqrt(x)))
        return true;
    return false;
}

int inverted(int n)//求倒序数
{
    int sum=0;
    while(n>0)
    {
        sum=sum*10+n%10;
        n/=10;
    }
    return sum;
}

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值