dilated convolution

原创 2017年08月13日 13:24:42

参考论文:Multi-Scale Context Aggregation by Dilated Convolutions

图像语义分割为,将图像像素点进行分类,例如FCN(全卷积网络),首先将输入图像输入CNN提取图像特征,在输入pooling层,以缩小尺寸并提高感受野。但由于是对图像的每个像素点进行分类,即输出与输入大小相同,因此pooling之后需要对其进行upsampling,以扩大图像尺寸。将图像由小变大的过程势必导致一些信息的丢失,那么就会想到是否可以不进行pooling操作,也可以增大感受野呢。本文提出的dilated convolution正是为了解决这个问题。

dilated convolution

F:Z2>R为一个离散函数,k为大小为(2r+1)2的离散滤波器,则离散卷积操作*定义如下:
这里写图片描述
定义l为dilation 因子,*l操作定义如下:
这里写图片描述

l操作即为一个dilated convolution,也称为l-dilated convolution。我们熟悉的离散卷积也就是1-dilated convolution.
定义F0,F1,...,Fn:Z2>R为离散函数,k0,k1,...,kn23×3的离散滤波器,dilated convolution满足指数增长:
这里写图片描述
也就是说每个Fi+1是由Fi经过2idilated convolution得到的。每个Fi+1的感受野为(2i+21)×(2i+21)
这里写图片描述
图中,F1是由F0经1-dilated convolution得到的,F1的每个元素感受野为3×3.F2是由F1经2-dilated convolution得到的,F2的每个元素感受野为7×7.F3是由F2经4-dilated onvolution得到的,F3的每个元素感受野为15×15.

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Dilated Convolution

本次介绍一篇有关语义分割的文章,其核心思想是如何不失分辨率的扩大感受野,该方法已被caffe默认支持。 该思想也可以应用到目标检测上来。文章《MULTI-SCALE CONTEXT AGGREGATI...

论文笔记——CVPR 2017 Dilated Residual Networks

1. Background       这次我来介绍一篇深度网络文章《Dilated Residual Networks》,发表在CVPR 2017会议上。作者是普林斯顿大学的Fisher Yu博士等...
  • jzrita
  • jzrita
  • 2017-05-23 15:08
  • 1325

【深度学习】反卷积(transposed convolution)介绍

反卷积与卷积 反卷积,顾名思义是卷积操作的逆向操作。 为了方便理解,假设卷积前为图片,卷积后为图片的特征。 卷积,输入图片,输出图片的特征,理论依据是统计不变性中的平移不变性(translati...

correlation和convolution

  • 2010-06-17 20:52
  • 141KB
  • 下载

bnu52326Just Convolution弱校联盟10.5【暴力?复杂度】

题意:给定a数组和b数组。求c数组要求c[k]=max(a[i]+b[j])其中i+j==k||i+j==k+n 做法:一直在想如何降低时间复杂度未果,看了Ac代码觉得似曾相识?? 由于要凑数嘛,而且...

Properties of Convolution

  • 2012-11-11 20:46
  • 279KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)