关闭

机器学习 标称型和数值型概念

标签: 机器学习
9843人阅读 评论(1) 收藏 举报
分类:

参考:

《Machine Learning in Action》第一部分 分类


##############################################################


在监督学习(supervised learning)的过程中,只需要给定输入样本集,机器就可以从中推演出指定目标变量的可能结果。监督学习相对比较简单,机器只需从输入数据中预测合适的模型,并从中计算出目标变量的结果。


监督学习一般使用两种类型的目标变量:标称型和数值型


标称型:标称型目标变量的结果只在有限目标集中取值,如真与假(标称型目标变量主要用于分类)


数值型:数值型目标变量则可以从无限的数值集合中取值,如0.100,42.001等 (数值型目标变量主要用于回归分析)

12
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:572201次
    • 积分:8270
    • 等级:
    • 排名:第2542名
    • 原创:294篇
    • 转载:40篇
    • 译文:10篇
    • 评论:74条
    博客专栏
    文章分类
    最新评论