deeplearning系列(四)主成分分析与白化

1. 主成分分析数学背景

白化是一种常见的数据预处理步骤,而主成分分析(PCA)是实现白化的重要一步。

假设我们有数据集 {x(1),...x(m)} ,且这些数据经过了处理,每个维度具有0均值和相同的方差,如下图所示。


图片名称

通常数据中存在冗余,以上图为例,数据可以投影到一个方向上,这样数据可以由二维变成一维的,减少数据冗余。

PCA即是这样的一种算法,通过寻找一个低维空间来映射数据。首先要计算协方差矩阵:

Σ=1mi=1m(x(i))(x(i))T

然后求协方差矩阵的特征向量和特征值:
U=[u1,...un]λ=[λ1,...λn]

其中特征值的大小满足关系: λ1>λ2>...>λn ,则 u1 称为x的第一主轴, y1=u1x 称为x的第一主成分,以此类推, un 称为x的第n主轴, yn=unx 称为x的第n主成分。

2. 旋转数据

旋转后的数据,可以表示为:

y=UTx

matlab代码为:

sigma = x * x' / size(x, 2);
[u,s,v] = svd(sigma);
y = u'*x;

上面数据集旋转后的结果为:

图片名称

3. 数据降维

在n个特征维度中,经PCA降维后将维度减至k维,降维后的数据可以表示为:

xrot=[u1,u2,...uk]Tx

从压缩后的数据还原原始数据,可以表示为:

xnew=U[u1,u2,...uk,0,...,0]Tx

matlab代码如下:

k = 1; % Use k = 1 and project the data     onto the first eigenbasis
xHat = zeros(size(x));
xRot = zeros(size(x));
xRot(1:k,:) = u(:,1:k)' * x;
xHat = u * xRot;

实验结果为:

图片名称

4. PCA白化

对于有些数据集来说,不同特征之间有很强的相关性,比如图像像素之间是有关联的,白化的目的是去除原始特征数据之间的相关性,降低数据的冗余。我们希望经过白化处理后,数据之间具有这样的性质:

  1. 特征之间相关性较低;
  2. 所有的特征维度具有相同的方差。

由PCA的原理知,经PCA转换后的数据特征之间已没有了相关性,现在仅需要满足第二个条件,统一不同特征之间的方差。
转换后数据的协方差矩阵为: diag{λ1,...,λn} 。所以仅需要将转换后的每个特征维度乘以 1/λi ,因为可能存在特征值 λi 接近于0的情况, 1/λi 此时过大,乘以该数值后会产生数据上溢,在实践中,使用正则化解决这个问题,即给每个特征值加上一个很小的常数 ϵ :

xPCAwhite,i=yiλi+ϵ

matlab代码为:

epsilon = 1e-5;
xPCAWhite = zeros(size(x)); 
xRot = u'*x;
xPCAWhite = diag(1./sqrt(diag(s)+epsilon))*xRot;

实验结果:

图片名称

5. ZCA白化

由白化的定义知,所谓白化,即使转换后的数据协方差矩阵为单位矩阵,可以证明,对任意的正交矩阵R,即满足: RRT=RTR=I ,则 RxPCAwhite 仍具有单位协方差。在ZCA白化中,令 R=U ,可得ZCA白化结果为:

xZCAwhite=UxPCAwhite

matlab代码为:

xZCAWhite = zeros(size(x)); 
xZCAWhite = u * diag(1./sqrt(diag(s) + epsilon)) * u' * x;

实验结果为:


图片名称

参考资料:
1.http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值