恒生ptrade追涨停功能介绍

恒生Ptrade——追涨停

打开之后的界面

上方是股票监控窗口,可以看到股票代码、名称等。

下方是委托信息以及委托的日志信息

首先点击“参数模版”

参数模版分为委托参数和撤单参数

1.设置委托参数

-委托金额

-个股涨幅

-涨停时间

-档位阀值

-交易时间

(因为市场在实时变化,所以这个委托可能存在风险。)

2.设置撤单参数

-成交量比

-tick序号

-封单循环时长

(符合以上三个条件的任意条件,都会执行撤单,如果是不想启用其中的条件,比如不想启用封单量,可以设置成0手。)

设置完成之后点击确定。

接下来设置监控股票池

股票代码可以手工输入也可使用模版导入股票

股票池导入成功之后,点击“监控”

页面显示股票名称代码,监控状态,当前涨幅,当前买一量,当前卖一量。只要符合参数模版中的设置就会触发委托以及撤单参数。

触发委托之后会在下方委托信息栏显示,也可在委托信息栏手工撤单。

股票委托成交之后会显示在日志信息栏。

### 关于 Ptrade 平台实现打板策略的代码 在Ptrade平台上构建打板策略涉及到几个核心组件:初始化设置、数据获取以及交易逻辑执行。下面提供了一个简化版的Python代码示例来展示如何利用Ptrade API创建一个基本的打板策略。 #### 初始化函数 `initialize` 此部分用于定义全局变量并配置初始参数,比如设定目标证券列表和一些必要的开关条件等。 ```python def initialize(context): context.stock = '600570.SS' # 设定要操作的具体股票代码 set_universe([context.stock]) # 配置其他可能需要用到的全局属性 context.buy_signal = False context.sell_signal = True log.info("Initialization completed.") ``` #### 数据处理与信号生成 `handle_data` 该方法会在每一个时间周期被调用一次,在这里可以加入具体的买卖判断逻辑。对于打板策略而言,则需特别注意涨停价附近的成交量变化情况作为入场时机的选择依据之一。 ```python def handle_data(context, data): current_price = data.current(context.stock, 'price') last_close = data.history(context.stock, bar_count=1, frequency="1d", fields=['close'])['close'][0] # 判断是否达到涨停状态 (假设A股市场涨跌幅限制为10%) limit_up = round(last_close * 1.1, 2) if not context.buy_signal and abs(current_price - limit_up) < 0.01: # 当前价格接近或等于涨停价位时发出买入指令 order_target_percent(context.stock, 1) context.buy_signal = True log.info(f"Bought {context.stock} at market price near the upper limit.") elif context.buy_signal and context.sell_signal: # 如果已经持有仓位并且满足卖出条件则平仓离场 order_target_percent(context.stock, 0) context.sell_signal = False log.info(f"Sell all shares of {context.stock}.") ``` 上述代码片段展示了基于Ptrade框架下的一种简单形式的打板策略实现方式[^1]。需要注意的是实际应用过程中还需要考虑更多因素如手续费成本控制、风险管理和资金分配等问题;此外也建议结合具体市场的特点调整相应的阈值判定标准以提高模型的有效性和稳定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值