deeplearning系列(一)浅层神经网络

本文介绍深度学习的基础——浅层神经网络,包括前向传播、反向传播算法、权重衰减的原理,并提供了3层神经网络的Python实现,有助于理解深度学习的基本训练过程。
摘要由CSDN通过智能技术生成

因为项目的需要,这周开始学习深度学习。为了了解深度神经网络,则需要从浅层网络学起,尤其是通过浅层神经网络的推导,掌握反向传播算法的实现原理。本文以一个3层神经网络为例,对从前向传播到反向传播的整个训练过程进行推导,并给出了python代码实现。

1. 前向传播算法

这里写图片描述
上图给出一个简单的三层神经网络,最左边一层为输入层 L1 ,中间层为隐藏层 L2 ,最右边一层为输出层 L3

本神经网络有参数 (W,b)=(W(1),b(1),W(2),b(2)) ,其中 W(l)ij 表示第 l 层第 j 个单元到第 l+1 层第 i 个单元之间的连接权值, b(l)i 表示第 l+1 层第 i 个单元的偏置项。我们用 z(l)i 表示第 l 层第 i 个单元的输入加权和,用 a(l)i 表示第 l 层第 i 个单元的激活值。则本例神经网络的计算步骤(前向传播步骤)如下:

z(2)1=W(1)11x1+W(1)12x2+b(1)1,a(2)1=f1(z(2)1)z(2)2=W(1)21x1+W(1)22x2+b(1)2,a(2)2=f1(z(2)2)z(2)3=W(1)31x1+W(1)32x2+b(1)3,a(2)3=f1(z(2)3)z(2)4=W(1)41x1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值