deeplearning系列(二)自编码神经网络

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012526120/article/details/48861925

1. Pre_training

神经网络算法通过反向传播(back propogation)求得目标函数关于参数的偏导数(或者称梯度值),然后使用梯度下降法(例如SGD)或者拟牛顿法(例如L-BFGS)等优化算法求得使目标函数最小化时的参数取值。
由于目标函数非凸的,同时由于深度网络参数之多,又因为反向传播对初始化的参数十分敏感,如果参数初始值选择的不好,很容易使目标函数的求解陷入很差的局部最优解。为了解决这个困难的最佳化问题,提出了pre_training 的方案,即通过pre_training技术使预训练得到的参数作为反向传播的起始点。这样可以使反向传播的初始搜索点放在一个比较好的位置,从而保证优化算法可以收敛到一个比较好的局部最优解。


图片名称

上图展示了一个简单的pre_training的流程图,首先通过逐层pre_training得到每层的参数,然后使用反向传播来微调(fine-tune)这些预训练的参数值。

2. 自编码神经网络

通过神经网络学习的权重参数W(l)的物理意义是什么?在神经网络的架构下,权重参数代表了如何进行特征转换,也就是转换输入特征的表现形式,也称为编码(encoding)。pre_training的目的就是学习这些权重参数的,那么怎样定义学习到的参数的好坏呢?
好的权重可以:

  1. 以更精炼的形式(特征维数减少)保存前面一层的信息;
  2. 同时尽可能少的丢失上一层的信息(也称为information-preserving encoding);
  3. 使用转换后的特征还可以很容易地重构出原始的特征。

自编码神经网络(Autoencoder)即是一种可以满足这些要求的pre_training技术。它是一种无监督学习算法,使用反向传播,使目标函数的输出等于输入值。下图是一个示例。


图片名称

自编码神经网络试图逼近这样的一个恒等函数:hW,b(x)=x。使得神经网络的输出等于输入,这样隐藏层可以看做对输入的压缩编码,使用压缩编码后的特征可以重构出原始特征。

3. 稀疏约束

和包含一个隐藏层的普通神经网络相比,自编码神经网络除了满足输出等于输入的要求外,还可以加入其它的要求,比如稀疏性约束。
稀疏约束的一种方式可以表示为:激活函数为sigmoid时,神经元输出接近于1时可以看做该神经元被激活,输出接近于0时看做被抑制。
我们用a(2)j表示隐藏神经元j的激活度,则激活度在训练集上的平均值:

ρ^j=1mi=1ma(2)j(x(i))

表示隐藏神经元j平均激活度。然后施加稀疏限制:

ρ^j=ρ

其中,ρ为稀疏性参数,是一个接近于0的值,比如0.05。为了实现这一限制,在目标函数中添加另一个惩罚项,从而使隐藏神经元的激活值在一个接近于ρ的适当范围内。隐藏项选择相对熵的形式:

j=1s2KL(ρ||ρ^j)=j=1s2ρlogρρ^j+(1ρ)log1ρ1ρ^j

下图给出了ρ=0.2时相对熵KL(ρ||ρ^j)随自变量ρ^j的变化情况。


图片名称

可以看出,只有当ρ^j=ρ时惩罚值为0,自变量取其它值时,都施加了很大的惩罚。


总的目标函数为

J(W,b)=1mi=1m12||h(x(i))y(i)||2+λ2(||W(1)||2+||W(2)||2)+βj=1s2KL(ρ||ρ^j)


4. 反向传播

与上一节浅层神经网络相比,反向传播的不同之处在于残差的变化:

δ(3)=(ya(3))f(z(3))

δ(2)=((W(2))Tδ(3)+β(ρρ^j+1ρ1ρ^j))f(z(2))

其中,f(z)为sigmoid函数。

5. L-BFGS优化

目标函数的优化不采用梯度下降,而用另一种迭代次数更少的L-BFGS算法,该文中是调用第三方库实现的。我们需要做的是给出一个函数,函数的入口是参数值: theta,返回值是在该参数取值下,目标函数的值: cost,和参数的梯度值: grad。函数的MATLAB代码如下:

function [cost,grad] = sparseAutoencoderCost(theta, visibleSize, hiddenSize, ...
                                             lambda, sparsityParam, beta, data)

% visibleSize: the number of input units (probably 64) 
% hiddenSize: the number of hidden units (probably 25) 
% lambda: weight decay parameter
% sparsityParam: The desired average activation for the hidden units (denoted in the lecture
%                           notes by the greek alphabet rho, which looks like a lower-case "p").
% beta: weight of sparsity penalty term
% data: Our 64x10000 matrix containing the training data.  So, data(:,i) is the i-th training example. 

% The input theta is a vector (because minFunc expects the parameters to be a vector). 
% We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this 
% follows the notation convention of the lecture notes. 

W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);

% Cost and gradient variables (your code needs to compute these values). 
% Here, we initialize them to zeros. 
cost = 0;
W1grad = zeros(size(W1)); 
W2grad = zeros(size(W2));
b1grad = zeros(size(b1)); 
b2grad = zeros(size(b2));

% Compute the cost/optimization objective J_sparse(W,b) for the Sparse Autoencoder,
% and the corresponding gradients W1grad, W2grad, b1grad, b2grad.

[ndim, m] = size(data);
% Forward propagation
z2 = W1*data + repmat(b1,1,m);
a2 = sigmoid(z2);
z3 = W2*a2 + repmat(b2,1,m);
a3 = sigmoid(z3);

% Back propagation
delta3 = -(data-a3).*sigmoidGrad(z3);
rho = 1./m * sum(a2,2);
delta2 = (W2'*delta3+beta*(-repmat(sparsityParam./rho,1,m)+repmat((1-sparsityParam)./(1-rho),1,m))).*sigmoidGrad(z2);
W2grad = 1./m *delta3*a2';
b2grad = 1./m *sum(delta3,2);
W1grad = 1./m *delta2*data';
b1grad = 1./m *sum(delta2,2);

% add regularization term
W2grad = W2grad + lambda*W2;
W1grad = W1grad + lambda*W1;

% calculate the cost
cost = 1./m*sum(1./2*sum((a3-data).^2));
cost = cost + lambda/2.0*(sum(sum(W1.^2))+sum(sum(W2.^2)));
cost = cost + beta*(sum(sparsityParam*log(sparsityParam./rho))+sum((1-sparsityParam)*log((1-sparsityParam)./(1-rho))));

%-------------------------------------------------------------------
% After computing the cost and gradient, we will convert the gradients back
% to a vector format (suitable for minFunc).  Specifically, we will unroll
% your gradient matrices into a vector.

grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];

end

%-------------------------------------------------------------------
% Here's an implementation of the sigmoid function, which you may find useful
% in your computation of the costs and the gradients.  This inputs a (row or
% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). 

function sigm = sigmoid(x)

    sigm = 1 ./ (1 + exp(-x));
end
% Here's an implementation of the gradient of sigmoid function
function grad = sigmoidGrad(x)

    grad = exp(-x) ./ ((1 + exp(-x)).^2);
end

调用L-BFGS算法的MATLAB代码如下:

%  training the sparse autoencoder with minFunc (L-BFGS).
%  Randomly initialize the parameters
theta = initializeParameters(hiddenSize, visibleSize);

%  Use minFunc to minimize the function
addpath minFunc/
options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
                          % function. Generally, for minFunc to work, you
                          % need a function pointer with two outputs: the
                          % function value and the gradient. In our problem,
                          % sparseAutoencoderCost.m satisfies this.
options.maxIter = 400;    % Maximum number of iterations of L-BFGS to run 
options.display = 'on';
[opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
                                   visibleSize, hiddenSize, ...
                                   lambda, sparsityParam, ...
                                   beta, patches), ...
                                   theta, options);

最后得到了经过400次L-BFGS迭代后的目标函数值: cost,及这时的参数值: opttheta。

6. 可视化自编码神经网络训练结果

隐藏单元的输出为:

a(2)=f(W(1)x+b(1))

在输入有范数约束:||x||21的情况下,使得隐藏单元得到最大激励的输入为:

x=W(1)||W(1)||2

我们在10000张8X8的输入图像上进行训练,隐藏单元的数量是25,可视化的结果包含25张这样的图像,结果如下:
这里写图片描述
上图中每个小图给出了一个带有界范数的输入图像x,在这样的输入下可以使得25个隐藏单元获得最大激励。可以看出,不同的隐藏单元学到的是输入图像的边缘。

参考内容:
1.Andrew NG的深度学习教程:http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial
2.台湾大学机器学习技法课程

没有更多推荐了,返回首页