深度学习笔记(四)用Torch实现MNIST手写数字识别

转自:

本节代码地址:


https://github.com/vic-w/torch-practice/tree/master/mnist

MNIST是手写数字识别的数据库。在深度学习流行的今天,MNIST数据库已经被大家玩坏了。但是用它来学习卷积神经网络是再好不过的了。这一次,我们就用Torch来实现MNIST数据库的识别。

这一次的代码用到了mnist库,如果之前没有安装,可以在命令行键入:

luarocks install mnist


和往常一样,我们要先包含必要的库

require 'torch'
require 'nn'
require 'optim'
mnist = require 'mnist'
其中require ’mnist'一句返回了一个mnist的对象。可以用下面两句来获得mnist的图像数据。

fullset = mnist.traindataset()
testset = mnist.testdataset()


接下来我们主要关注的就是模型如何建立,因为除了模型之外,其他的代码都是大同小异的。

首先来看一下著名的LeNet网络模型:



这个图是从Caffe那里借来的。其实用Caffe训练LeNet模型真的是又快又好。但我们的目的是为了学习,所以我们还是用Torch再把它实现一遍。

从上面的图上可以看出,这个模型首先使用了Scale层(蓝色),把输入的图片取值缩小到一定范围内。然后是连续两个卷积层conv1和conv2(红色),分别接一个池化层pool1和pool2(黄色),最后是两个全连接层ip1和ip2 (紫色,ip=inner product),将所有的信息归结到最后的Softmax层(蓝色)。其中只有在两个全连接层之间使用了激活层,激活方式是ReLU(Rectified Linear Units)

将这个模型用Torch的代码实现也非常简单。首先仍然是建立一个容器用来存放各种模块。

model = nn.Sequential()


放入一个reshape模块。因为mnist库的原始图片是储存为1列728个像素的。我们需要把它们变成1通道28*28的一个方形图片。

model:add(nn.Reshape(1, 28, 28))


接下来要把图片的每个像素除以256再乘以3.2,也就是把像素的取值归一化到0至3.2之间。这相当于Caffe中的Scale模块。

model:add(nn.MulConstant(1/256.0*3.2))


然后是第一个卷积层,它的参数按顺序分别代表:输入图像是1通道,卷积核数量20,卷积核大小5*5,卷积步长1*1,图像留边0*0

model:add(nn.SpatialConvolutionMM(1, 20, 5, 5, 1, 1, 0, 0))


一个池化层,它的参数按顺序分别代表:池化大小2*2,步长2*2,图像留边0*0

model:add(nn.SpatialMaxPooling(2, 2 , 2, 2, 0, 0))


再接一个卷积层和一个池化层,由于上一个卷积层的核的数量是20,所以这时输入图像的通道个数为20

model:add(nn.SpatialConvolutionMM(20, 50, 5, 5, 1, 1, 0, 0))
model:add(nn.SpatialMaxPooling(2, 2 , 2, 2, 0, 0))


在接入全连接层之前,我们需要把数据重新排成一列,所以有需要一个reshape模块

model:add(nn.Reshape(4*4*50))


这个参数为什么是4*4*50即800呢?其实是这样算出来的:我们的输入是1通道28*28的图像,经过第一个卷积层之后变成了20通道24*24的图像。又经过池化层,图像尺寸缩小一半,变为20通道12*12。通过第二个卷积层,变为50通道8*8的图像,又经过池化层缩小一半,变为50通道4*4的图像。所以这其中的像素一共有4*4*50=800个。

接下来是第一个全连接层。输入为4*4*50=800,输出为500

model:add(nn.Linear(4*4*50, 500))


两个全连接层之间有一个ReLU激活层

model:add(nn.ReLU())


然后是第二个全连接层,输入是500,输出是10,也就代表了10个数字的输出结果,哪个节点的响应高,结果就定为对应的数字。

model:add(nn.Linear(500, 10))


最后是一个LogSoftMax层,用来把上一层的响应归一化到0至1之间。

model:add(nn.LogSoftMax())


模型的建立就完成了。我们还需要一个判定标准。由于我们这一次是要解决分类问题,一般使用nn.ClassNLLCriterion这种类型的标准(Negative Log Likelihood)

criterion = nn.ClassNLLCriterion()


为了要达到更好的优化效果,这里需要对model内部参数的初始化做一下特殊的处理。还记得torch会帮我们随机初始化参数吗?我们现在不使用torch的初始化参数,而使用一种更高级的初始化方法,称之为xavier方法。概括来讲,就是根据每层的输入个数和输出个数来决定参数随机初始化的分布范围。在代码里只需要一句:

model = require('weight-init')(model, 'xavier')


其中的‘weight-init’指向了与主文件同一文件夹里的weight-init.lua这个文件。xavier方法就在这个文件里面。它是由 https://github.com/e-lab/torch-toolbox所实现的。

到这里,网络模型的部分就都已经完成了。我们现在就需要建立评估函数,然后循环迭代就可以了。这些都是例行公事,可以参照前面的代码来写,这里就不在赘述了。

完整的代码在这里,大家可以运行试一试。

require 'torch'
require 'nn'
require 'optim'
--require 'cunn'
--require 'cutorch'
mnist = require 'mnist'

fullset = mnist.traindataset()
testset = mnist.testdataset()

trainset = {
    size = 50000,
    data = fullset.data[{{1,50000}}]:double(),
    label = fullset.label[{{1,50000}}]
}

validationset = {
    size = 10000,
    data = fullset.data[{{50001,60000}}]:double(),
    label = fullset.label[{{50001,60000}}]
}

trainset.data = trainset.data - trainset.data:mean()
validationset.data = validationset.data - validationset.data:mean()

model = nn.Sequential()
model:add(nn.Reshape(1, 28, 28))
model:add(nn.MulConstant(1/256.0*3.2))
model:add(nn.SpatialConvolutionMM(1, 20, 5, 5, 1, 1, 0, 0))
model:add(nn.SpatialMaxPooling(2, 2 , 2, 2, 0, 0))
model:add(nn.SpatialConvolutionMM(20, 50, 5, 5, 1, 1, 0, 0))
model:add(nn.SpatialMaxPooling(2, 2 , 2, 2, 0, 0))
model:add(nn.Reshape(4*4*50))
model:add(nn.Linear(4*4*50, 500))
model:add(nn.ReLU())
model:add(nn.Linear(500, 10))
model:add(nn.LogSoftMax())

model = require('weight-init')(model, 'xavier')

criterion = nn.ClassNLLCriterion()

--model = model:cuda()
--criterion = criterion:cuda()
--trainset.data = trainset.data:cuda()
--trainset.label = trainset.label:cuda()
--validationset.data = validationset.data:cuda()
--validationset.label = validationset.label:cuda()

sgd_params = {
   learningRate = 1e-2,
   learningRateDecay = 1e-4,
   weightDecay = 1e-3,
   momentum = 1e-4
}

x, dl_dx = model:getParameters()

step = function(batch_size)
    local current_loss = 0
    local count = 0
    local shuffle = torch.randperm(trainset.size)
    batch_size = batch_size or 200
    for t = 1,trainset.size,batch_size do
        -- setup inputs and targets for this mini-batch
        local size = math.min(t + batch_size - 1, trainset.size) - t
        local inputs = torch.Tensor(size, 28, 28)--:cuda()
        local targets = torch.Tensor(size)--:cuda()
        for i = 1,size do
            local input = trainset.data[shuffle[i+t]]
            local target = trainset.label[shuffle[i+t]]
            -- if target == 0 then target = 10 end
            inputs[i] = input
            targets[i] = target
        end
        targets:add(1)
        local feval = function(x_new)
            -- reset data
            if x ~= x_new then x:copy(x_new) end
            dl_dx:zero()

            -- perform mini-batch gradient descent
            local loss = criterion:forward(model:forward(inputs), targets)
            model:backward(inputs, criterion:backward(model.output, targets))

            return loss, dl_dx
        end

        _, fs = optim.sgd(feval, x, sgd_params)

        -- fs is a table containing value of the loss function
        -- (just 1 value for the SGD optimization)
        count = count + 1
        current_loss = current_loss + fs[1]
    end

    -- normalize loss
    return current_loss / count
end

eval = function(dataset, batch_size)
    local count = 0
    batch_size = batch_size or 200
    
    for i = 1,dataset.size,batch_size do
        local size = math.min(i + batch_size - 1, dataset.size) - i
        local inputs = dataset.data[{{i,i+size-1}}]--:cuda()
        local targets = dataset.label[{{i,i+size-1}}]:long()--:cuda()
        local outputs = model:forward(inputs)
        local _, indices = torch.max(outputs, 2)
        indices:add(-1)
        local guessed_right = indices:eq(targets):sum()
        count = count + guessed_right
    end

    return count / dataset.size
end

max_iters = 30

do
    local last_accuracy = 0
    local decreasing = 0
    local threshold = 1 -- how many deacreasing epochs we allow
    for i = 1,max_iters do
        local loss = step()
        print(string.format('Epoch: %d Current loss: %4f', i, loss))
        local accuracy = eval(validationset)
        print(string.format('Accuracy on the validation set: %4f', accuracy))
        if accuracy < last_accuracy then
            if decreasing > threshold then break end
            decreasing = decreasing + 1
        else
            decreasing = 0
        end
        last_accuracy = accuracy
    end
end

testset.data = testset.data:double()
eval(testset)
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值