POJ 2421 Constructing Roads(简单最小生成树)
http://poj.org/problem?id=2421
题意:
有N个点的无向图,给了你该图的距离矩阵.且其中一些点已经连接起来了,现在要你求让该无向图连通,你需要添加边的总长度最少是多少?
分析:
将已经连通的边看成是长度为0的边,然后用Kruskal算法处理即可.完全图,一定存在最小生成树.
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100+10;
const int maxm=20000+10;
struct Edge
{
int u,v,dist;
Edge(){}
Edge(int u,int v,int dist):u(u),v(v),dist(dist){}
bool operator<(const Edge &rhs)const
{
return dist<rhs.dist;
}
};
struct Kruskal
{
int n,m;
Edge edges[maxm];
int fa[maxn];
int findset(int x){ return fa[x]==-1? x:fa[x]=findset(fa[x]); }
void init(int n)
{
this->n=n;
m=0;
memset(fa,-1,sizeof(fa));
}
void AddEdge(int u,int v,int dist)
{
edges[m++]=Edge(u,v,dist);
}
int kruskal()
{
int sum=0;
int cnt=0;
sort(edges,edges+m);
for(int i=0;i<m;i++)
{
int u=edges[i].u, v=edges[i].v;
if(findset(u) != findset(v))
{
fa[findset(u)]= findset(v);
sum +=edges[i].dist;
if(++cnt>=n-1) return sum;
}
}
return -1;
}
}KK;
int main()
{
int n;
scanf("%d",&n);
KK.init(n);
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
int x;
scanf("%d",&x);
if(i<j) KK.AddEdge(i,j,x);
}
int Q;
scanf("%d",&Q);
while(Q--)
{
int u,v;
scanf("%d%d",&u,&v);
u--,v--;
KK.AddEdge(u,v,0);
}
printf("%d\n",KK.kruskal());
return 0;
}