主成分分析(PCA降维)与最小二乘-原理以及详细推导

本文深入探讨主成分分析(PCA),从最小二乘法出发,逐步推导PCA的优化目标,揭示PCA实际上寻找的是数据协方差矩阵的最大特征值对应的特征向量。通过特征值分解,PCA实现数据的降维,从而降低复杂性和提高效率。
摘要由CSDN通过智能技术生成

重新整理了PCA相关的原理和推导

从最小二乘出发, 其原理可以描述为: 在数据空间 χ \chi χ中寻找一个超平面, 让数据样本到该超平面的距离平方之和最小.

数据点到超平面距离的计算试为该点向量减该点在超平面上的投影所得向量的长度, 即
d i s t ( x i , p l a n e ) = ∣ ∣ x i − x ^ i ∣ ∣ 2 dist(x_i,plane)=||\textbf{x}_i-\hat{\textbf{x}}_i||_2 dist(xi,plane)=xix^i2

下标2表示L2范数, 几何解释如图
这里写图片描述
假设该超平面由 d ′ d' d个标准正交向量张成, 即
p l a n e = s p a n { w 1 , w 2 , w 3 , . . . , w d ′ } , s . t .    w i ⋅ w j = δ i j plane = span\{\textbf{w}_1,\textbf{w}_2,\textbf{w}_3,...,\textbf{w}_{d'}\},\\ s.t.\ \ \textbf{w}_i\cdot \textbf{w}_j=\delta_{ij} plane=span{ w1,w2,w3,...,wd},s.t.  wiwj=δij
W = [ w 1 , w 2 , w 3 , . . . , w d ′ ] W=[\textbf{w}_1,\textbf{w}_2,\textbf{w}_3,...,\textbf{w}_{d'}] W=[w1,w2,w3,...,wd],则 PCA的优化目标可表示为
a r g min ⁡ W ∑ i ∣ ∣ x i − x ^ i ∣ ∣ 2 2 s . t .    W T W = I (1) arg\min_{W}{\sum_i{||\textbf{x}_i-\hat{\textbf{x}}_i||^2_2}}\\ s.t.\ \ W^TW=I\tag{1} argWminixix^i22s.t.  WTW=I(1)
由线性代数知识可知, 数据点 x i x_i xi在超平面上的投影可表示为
x ^ i = ∑ j = 1 d ′ ( w j T x i ) w j \hat{\textbf{x}}_i = \sum_{j=1}^{d'}{(\textbf{w}_j^T\textbf{x}_i) \textbf{w}_j} x^i=j=1d(wjTxi)wj
于是优化目标可写为
a r g min ⁡ W ∑ i ∣ ∣ ∑ j = 1 d ′ ( w j T x i ) w j − x i ∣ ∣ 2 2 s . t .    W T W = I (2) arg\min_{W}{\sum_i{||\sum_{j=1}^{d'}{(\textbf{w}_j^T\textbf{x}_i) \textbf{w}_j}-\textbf{x}_i||^2_2}}\\ s.t.\ \ W^TW=I\tag{2} argWminij=1d(wjTxi)wj

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值