有限与无限初探

   一直想写一点东西来专门剖析一下这一对对立统一的概念。只是本人对有限与无限的理解一直比较单纯,没有很好地去考虑这些问题,所以没写。这学期开始学实变函数,开始慢慢的认识这些东西。   
  以前总觉得,有限就是可以数的尽,是可以把握的,而无穷就是数不尽的也是难以预测的。很显然,这还没有上升到本质的高度。 在初等数学里,我们更多地在有限的领域里讨论,也更多的以有限作为手段进行讨论。在高等数学中,很多这些东西不再适用。由于人们习惯于有穷情况下的思维,所以一遇到无穷的情况时就要格外小心。在这里简单讨论一下有限与无限的一些区别以及联系。     在有限里成立的东西,放到无限里不一定对。因为从有限到无限不仅仅是一个量的变化,而是质的变化。     
   先考虑一个问题,如果有一个集合A,是否存在A的一个真子集B,使得A和B之间可以建立一个一一对应关系?稍微考虑一下,会觉得这是挺困难的一件事,B作为A的真子集,其元素个数一定比A的少,如果它们能建立这种双射的关系,那么它们元素个数应该相等,所以要满足B的元素个数既小于A的元素个数,又要满足B的元素个数等于A的元素个数,这是不可能的,因此这样的集合A是不存在的,当然其真子集B也就不存在了。
    可是,当你知道以上看似正确的推理是有问题的时候,你是什么心情?为什么说这个推理不正确呢?可以举一个这样
的例子:我们取
                                                                                                   
这里B确实是A的一个真子集,因为B里面任何一个元素均是A的元素,而存在元素1仅存在于A中,而不存在于B中。但是,可以建立A和B之间的一一对应关系

                                                                                    ,使

这就是在有穷思维下的误区。另一方面,这是不是说,任意两个无限集都能建立一一对应的关系呢?答案是否定的。无限也是有级别的,就像有限一样,所以为了区分不同的无限之间的级别,就需要对无穷集合定义它的级别,这就是集合的势。实变函数里面认为,所有能建立一一对应关系的集合是同一个级别的,就是说它们的势是相等的。事实上,如果A元素个数是有限的,以上推理是完全没有问题的,而当它的元素个数是无限的话,就需要另当别论了。这里可以得出有限与无限的本质区别:无限集合里面,部分可以跟整体一一对应(用实变函数的术语来说就是对等),而在有限集合里面,部分永远活在整体的阴影下,不可能一一对应。正是由于从有限到无限是质变,因此,有限里成立的某些结论在无限里就是无稽之谈。可以举几个例子:抽屉原理只能在有限的情况下适用。再比如,两个开集之交还是开集,有限个开集之交也是开集,但是无限个开集之交不一定是开集,这方面的例子是很容易举的。
                                                                                                                    
显然不是一个开集,而仅仅是一个孤立点。我们知道有限个有理数之和一定是有理数,但是无限的情况下,可以用这个反例加以否定:
                                                                                                      
无限个有理数之和竟然是一个无理数。最后一个例子:在有限的情况下,加法的结合律成立:(a+b)+c=a+(b+c),
但是无限的情况下,加法结合律不再成立。考虑
                                                                                                 
我们发现对一个无穷项的加法表达式,两种不同的加括号方式,居然得到两种不同的结果。连加法结合律这个东西都不能推广到无穷,可想而知,无穷的世界跟有限的世界差别到达何种程度。
当然了,也有的定理是很有爱的,在有限与无限的情况下均是成立的。比如集合论里面的de Morgan公式是可以推广到无限的情况的。
区别讨论至此,如果你们有什么高见,希望你们不吝赐教。下面详细讨论有限与无限之间的联系。
说到它们的联系,我们知道可以用有限的手段研究无限。尽管,在有限的世界里是真理的东西到了无限的世界可能就变得荒谬之极,但这并不能阻止我们用有限来研究无限的脚步。
说到这里,首先不得不提数学分析中一个非常有用的定理---有限覆盖定理:
设H为闭区间[a,b]的一个(无限)开覆盖,则从H中可选出有限个开区间来覆盖[a,b].这充分体现了数学里面的一种思想,以有限来研究无限。这当然不是说把有限的东西直接搬到无限里面去,而是说无限的东西可以转化为有限的东西来讨论。在某些情况下,我们需要讨论函数在[a,b]下的性质,可以把[a,b]划分为无限个开区间,然后这个定理告诉我们,只需要讨论这无限个区间里面有限个区间的性质就可以了。这是一种质的飞跃。
有的东西,还具有两种属性。In other words,既可以看成是有限的,也可以当做是无限的,这取决于你看它的角度。比如[a,b],如果你认为它是一个区间的话,它就是有限的,它有有限的区间长度;如果你认为它是一个集合的话,里面每一个点都是它的元素,它就是无限的,因为它的元素个数是无限的。
     其实,你有没有考虑过无限这个东西既然如此抽象,我们该如何定义呢?无限是个什么东西?我们不能来一个绝对的定义,比如认为小于某个很小的正常数就是无穷小,大于某个很大的正常数就是无穷大就是不恰当的。我们可以用有限来定义无限。可以想想我们怎么说明函数是无界的:
 
这里给定一个M以后,它就是一个有限的数,但是用它来描述的却是一件无限的事。
有限跟无限在一起,造就了定积分。把区间[a,b]分割成有限个区间,在各个区间上取点有无限种方法,去求有限个和,取极限后就变成了无限个和,然后得到的是一个有限的数,怎么样,晕了吧?
最后,着重讨论一下数学归纳法跟有限与无限的关系。
我们知道数学归纳法是通过有限的步骤,有限的方法与计算得到对无限个正整数都成立的结论。我们从下面这个例子看看数学归纳法的奇妙之处。
    在数列。下面用数学归纳法证明: 均是有理数。

    当n=1时,结论显然成立。
    假设当n=k时,结论成立,即是有理数,不妨设

                                                                                                  

那么:

                                                                                           

                           
所以也是有理数。因此可证得数列里,每一项均是有理数,但是这就能说是有理数吗?这就不对了,容易求得

                                                                                                                     
 
是一个无理数,但是刚刚不是说都是有理数吗?对呀!所以用数学归纳法证得的仅仅是对所有正整数均成立的结论,而不能证明的情形。虽然它证明了无限个命题,但它不能说明命题趋于无穷大的正确性。这是不是很不好理解呢。其实这个还是归结于无限跟有限的区别。从数学归纳法证的结论来看,它要证明的性质对第一个自然数就已经成立了,无论你再怎么捣弄,证明的还是这个性质,不涉及质变,换句话说就是虽然数学归纳法内部不断发生量变,但质变永远也不会到达。
其实,有限跟无限是对立统一的两个概念。很多哲学观点在它们身上都有体现,比如有限是具体的,无限是抽象的。有限静止的,无限是一个运动过程,是运动的。有限是常量,无限是变量。有限是这个过程的形式,无限是这个过程的结果。
所以,有限与无限是个很值得我们花时间思考的东西。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值