####概述:
数字滤波:就是对数字信号进行一定规则的运算,进而对信号频率有所改变,使成位所需的、有利于系统处理的信号。
时域关系: y(n) = x(n) * h(n)
Z 域关系: Y(z) = X(z) H(z)
频域关系: Y(jw) = H(jw) X(jw)
数字滤波器主要分为FIR滤波器和IIR滤波器。对于FIR滤波器,冲激响应在有限时间内衰减为零,其输出仅取决于当前和过去的输入信号值。对于IIR滤波器,冲激响应理论上应会无限持续,其输出不仅取决于当前和过去的输入信号值,也取决于过去的信号输出值。
####FIR滤波器:
FIR滤波器在保证幅度特性的同时,很容易做到严格的线性相位特性。在数字滤波器中,FIR滤波器的最主要特点是没有反馈回路,故不存在不稳定的问题;同时,在幅度特性可以任意设置的同时,保证了精确的线性相位。稳定和线性相位是FIR滤波器的突出优点。另外还有以下特点:设计方式是线性的;硬件容易实现;滤波器过渡过程具有有限区间;相对IIR滤波器而言,阶次较高,其延迟也要比同样性能的IIR滤波器大得多。
长度为 N 的 FIR 滤波器系统函数:
由此式可见,H(z)是1z的(N-1)次多项式,它在Z平面上有(N-1)个零点,原点z=0是(N-1)阶重极点,位于r =1的单位圆内,系统永远稳定。稳定性和线性相位特性是FIR滤波器的突出优点。
有限长 N 阶 FIR 滤波器传输函数:
式中 Hg(w) 称为幅度特性,Θ(w) 称为相位特性。线性相位是指 θ(w) = -τw 或者 θ(w) = -τw+θo ,(第一线性相位、第二线性相位)满足第一种的充要条件:h(n)为实序列信号,并且对 (N-1)/2偶对称,即 h(n)= h(N-n-1);满足第一种的充要条件:h(n)为序列实信号,并且对 (N-1)/2奇对称,即 h(n)= -h(N-n-1);
####FIR滤波器基本结构
####IIR滤波器
对于IIR和FIR的比较:
从性能上来说,IIR滤波器传递函数包括零点和极点两组可调因素,对极点的惟一限制是在单位圆内。因此可用较低的阶数获得高的选择性,所用的存储单元少,计算量小,效率高。但是这个高效率是以相位的非线性为代价的。选择性越好,则相位非线性越严重。FIR滤波器传递函数的极点固定在原点,是不能动的,它只能靠改变零点位置来改变它的性能。所以要达到高的选择性,必须用较高的阶数;对于同样的滤波器设计指标,FIR滤波器所要求的阶数可能比IIR滤波器高5-10倍,结果,成本较高,信号延时也较大;如果按线性相位要求来说,则IIR滤波器就必须加全通网络进行相位校正,同样要大大增加滤波器的阶数和复杂性。而FIR滤波器却可以得到严格的线性相位。
从结构上看,IIR滤波器必须采用递归结构来配置极点,并保证极点位置在单位圆内。由于有限字长效应,运算过程中将对系数进行舍入处理,引起极点的偏移。这种情况有时会造成稳定性问题,甚至产生寄生振荡。相反,FIR滤波器只要采用非递归结构,不论在理论上还是在实际的有限精度运算中都不存在稳定性问题,因此造成的频率特性误差也较小。此外FIR滤波器可以采用快速傅里叶变换算法,在相同阶数的条件下,运算速度可以快得多。
另外,也应看到,IIR滤波器虽然设计简单,但主要是用于设计具有分段常数特性的滤波器,如低通、高通、带通及带阻等,往往脱离不了模拟滤波器的格局。而FIR滤波器则要灵活得多,尤其是他易于适应某些特殊应用,如构成数字微分器或希尔波特变换器等,因而有更大的适应性和广阔的应用领域。
从上面的简单比较可以看到IIR与FIR滤波器各有所长,所以在实际应用时应该从多方面考虑来加以选择。从使用要求上来看,在对相位要求不敏感的场合,如语言通信等,选用IIR较为合适,这样可以充分发挥其经济高效的特点;对于图像信号处理,数据传输等以波形携带信息的系统,则对线性相位要求较高。如果有条件,采用FIR滤波器较好。当然,在实际应用中可能还要考虑更多方面的因素。
总结
不论IIR和FIR,阶数越高,信号延迟越大;同时在IIR滤波器中,阶数越高,系数的精度要求越高,否则很容易造成有限字长的误差使极点移到单位园外。因此在阶数选择上是综合考虑的.