Hog + svm 人流量检测方法总结

原创 2015年11月18日 16:24:16

Hog + svm 人流量检测方法总结

 

一、程序和数据来源

1、程序:

(1) HOGTrain  hog + svm训练代码

      (2) countpeople  人流检查代码,参考这个代码,增加了在图像上实时输出人数

功能

2、数据

    上海地铁视频数据,分帧得到图片用于训练测试。

二、训练测试参数设置

训练时要先设置hog和svm的参数,即更改svmInfo.info和detector.xml两个配置文件。

1、  选取窗口大小

经过多次实验窗口大小为64*80比较好,感兴趣区域大部分都可以检测到,

2、  直方图精度

这个参数在14~34之间最好,一般来说该值小点,速度快一些。

3、  HOG维数

通过实验,设置为4536效果最佳。

4、  测试感兴趣区

根据数据特点,选取感兴趣区。设置mask位置。

三、训练数据获取

     数据通过手动抓取方式得到,选取原则:正样本尽量要统一,负样本要多样性。

          这步最耗时。训练数据要至少一千,否则模型训练不充分。

四、 难例重训练

训练好模型后,用测试程序测试,查看测试结果,把测试错误地方记录下来。然后把错误地方选取为负样本,重新训练模型,然后在测试。重复多次,达到最优为止。

 该步比较重要,能够大幅度提高训练结果。

五、测试结果

通过多次难例训练。最好识别结果能够达到75%左右。离工程应用95%还有差距。

六、结果分析

感兴趣区域人基本上都能识别出来。误差原因:

(1)      玻璃人影干扰

(2)      人腹部、腿部干扰。

七、程序bug

(1)      不能在文件夹内删除样本,否则报bug.(程序对文件内图像进行遍历,然后从0开始遍历训练,中间有删掉就会报错)

(2)      增加样本页面下一个建不能用,还有选错样本后,只能回到初始界面删除。(这部分功能代码没有实现)

 

 

相关文章推荐

人流密度(crowd counting)估计方法

人流密度估计方法在深度学习起来之前主要有两种,直接估计和间接估计。近两年又有几篇做的不错的是使用cnn来进行估计。面临的挑战要进行准确的人流密度估计,面临了如下的难点 1.低分辨率:可以看看UCF ...

hog+svm 行人检测

总体思路: 1、提取正负样本hog特征 2、投入svm分类器训练,得到model 3、由model生成检测子 4、利用检测子检测负样本,得到hardexample 5、提取hardexa...

hog+svm行人检测算法中D盘的文件

  • 2017年03月29日 14:22
  • 18.63MB
  • 下载

hog+svm行人检测分类器训练

  • 2014年11月24日 17:32
  • 38.44MB
  • 下载

人头检测代码示例:SVM+HOG

网上关于HOG的理解以及结合SVM做检测的源码很多,这里我结合自己的理解对他们做一个综述和总结。...

自己训练SVM分类器进行HOG行人检测

  • 2013年11月13日 22:25
  • 23.65MB
  • 下载

hog+svm行人检测算法实例源码下载

  • 2017年03月27日 16:44
  • 6.52MB
  • 下载

利用Hog特征和SVM分类器进行行人检测

之前介绍过Hog特征(http://blog.csdn.net/carson2005/article/details/7782726),也介绍过SVM分类器(http://blog.csdn.net/...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Hog + svm 人流量检测方法总结
举报原因:
原因补充:

(最多只允许输入30个字)