Hdu-5335 Walk Out (BFS+贪心)

原创 2016年05月30日 17:04:56
Problem Description
In an nm maze(迷失), the right-bottom corner is the exit (position (n,m) is the exit). In every position of this maze, there is either a 0 or a 1 written on it.

An explorer gets lost in this grid. His position now is (1,1), and he wants to go to the exit. Since to arrive at the exit is easy for him, he wants to do something more difficult. At first, he'll write down the number on position (1,1). Every time, he could make a move to one adjacent(邻近的) position (two positions are adjacent if and only if they share an edge). While walking, he will write down the number on the position he's on to the end of his number. When finished, he will get a binary(二进制的) number. Please determine the minimum(最小的) value of this number in binary system.
 

Input
The first line of the input(投入) is a single integer(整数) T (T=10), indicating(表明) the number of testcases.

For each testcase, the first line contains two integers n and m (1n,m1000). The i-th line of the next n lines contains one 01 string of length m, which represents i-th row of the maze(迷宫).
 

Output
For each testcase, print the answer in binary(二进制的) system. Please eliminate(消除) all the preceding(领先) 0 unless the answer itself is 0 (in this case, print 0 instead).
 

Sample Input
2 2 2 11 11 3 3 001 111 101
 

Sample Output
111 101
 

Author
XJZX
 

Source
 

Recommend
wange2014   |   We have carefully selected several similar problems for you:  5711 5710 5709 5708 5707


题意:给你一个n*m的零一矩阵,起点在左上角终点在右下角,没走过一步记录下脚下的数字,最后求按二进制系统 最小的路径。


分析:考虑起始位置是不是0,若是0则BFS出所有离起点曼哈顿距离最远的点否则以(1,1)作为起点,BFS最小路径。

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int f[4][2] = {{1,0},{-1,0},{0,1},{0,-1}};
char S[1005][1005];
struct thing
{
	int x,y,v,f;
} q[1000007],Nq[1000007];
int T,n,m,s,t,ans[2010];
bool jud[1005][1005],F[2010];
int main()
{
	scanf("%d",&T);
	while(T--)
	{
		memset(jud,0,sizeof(jud));
		memset(F,0,sizeof(F));
		scanf("%d%d",&n,&m);
		for(int i = 1;i <= n;i++) scanf("%s",S[i]+1);
		if(S[1][1] == '0')
		{
			s = 1,t = 2;
			q[s].x = 1,q[s].y = 1;
			jud[1][1] = true;
			int Max = 2;
			while(s != t)
			{
				for(int k = 0;k < 4;k++)
				{
					int Nx = q[s].x + f[k][0],Ny = q[s].y + f[k][1];
					if(Nx && Nx <= n && Ny && Ny <= m && S[Nx][Ny] == '0')
					{
						q[t].x = Nx;
						q[t].y = Ny;
						Max = max(Max,Nx+Ny);
						if(!jud[q[t].x][q[t].y])
						{
							jud[q[t].x][q[t].y] = true;
							t++;
						}
					}
				}
				s++;
			}
			t--;
			s = 1;
			bool flag = false;
			while(t)
			{
				if(q[t].x == n && q[t].y == m) 
				{
					cout<<0<<endl;
					flag = true;
					break;
				}
				if (q[t].x+q[t].y == Max)
				{
					if(q[t].x < n)
					{
						Nq[s].x = q[t].x+1;
						Nq[s].y = q[t].y;
						if(!jud[Nq[s].x][Nq[s].y])
						{
							Nq[s].f = 0;
							jud[Nq[s].x][Nq[s].y] = true;
							s++;
						}
					} 
					if(q[t].y < m)
					{
						Nq[s].x = q[t].x;
						Nq[s].y = q[t].y+1;
						if(!jud[Nq[s].x][Nq[s].y])
						{
							Nq[s].f = 0;
							jud[Nq[s].x][Nq[s].y] = true;
							s++; 
						}
					}
				}
				t--;
			}
			if(flag) continue;
			t = s;
			s = 1;
		}
		else 
		{
			s = 1,t = 2;
			Nq[s].x = 1;
			Nq[s].y = 1;
			Nq[s].f = 0;
			jud[1][1] = true;
		}
		while(s != t)
		{
			if(F[Nq[s].x+Nq[s].y] && S[Nq[s].x][Nq[s].y] == '1') 
			{
				s++;
				continue;
			}
			if(Nq[s].x < n)
			{
				int Nx = Nq[s].x+1,Ny = Nq[s].y;
				if(!jud[Nx][Ny])
				{
					jud[Nx][Ny] = true;
					Nq[t].x = Nx;
					Nq[t].y = Ny;
					Nq[t].f = s;
					if(S[Nx][Ny] == '0') F[Nx+Ny] = true;
					t++;
				}
			}
			if(Nq[s].y < m)
			{
				int Nx = Nq[s].x,Ny = Nq[s].y+1;
				if(!jud[Nx][Ny])
				{
					jud[Nx][Ny] = true;
					Nq[t].x = Nx;
					Nq[t].y = Ny;
					Nq[t].f = s;
					if(S[Nx][Ny] == '0') F[Nx+Ny] = true;
					t++;
				}
			}
			s++;
		}
		for(int i = t-1;i;i--)
		 if(Nq[i].x == n && Nq[i].y == m) 
		 {
		 	int now = i,cnt = 0;
			while(now)
			{
				ans[++cnt] = S[Nq[now].x][Nq[now].y];
				now = Nq[now].f;
			} 
			for(int j = cnt;j;j--) cout<<char(ans[j]);
			cout<<endl;
		 	break;
		 }
	}	
} 



版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

【POJ】5335 - Walk Out 【BFS + 贪心】

题目 Walk Out Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To...

HDU 5335 - Walk Out (DFS + 贪心)

题目: http://acm.hdu.edu.cn/showproblem.php?pid=5335 题意: n*m的01矩阵,起点(1,1),终点(n,m)。求出走出的路径得到的最小的二进...

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

hdu 5335 Walk Out(dfs+bfs)

解析: 求从坐标(1,1)(1,1)到(n,n)(n,n)的路径中,所能得到的二进制数最小是什么。 解析: 要分情况讨论。 1. 如果(1,1)(1,1)是11的情况,那么这种情况用bf...

HDU 5335 walk out(特殊bfs)

题意:在一个只有‘0’和‘1’的矩阵中,找一条从(0,0)到(n,m)的字典序最小的一个路径。 做法:bfs。但是不能每条路径都搜,要按照一定层次的搜。如果(0,0)是‘0’,就从(0,0)开始找一...

hdu 5335 Walk Out

Work Out 这题目的大致意思是一个人在n*m的迷宫里,一开始在(1,1)处,要走到(n,m)处,他每走一格都会记录下这格格子上的数,格子上不是1就是0,现在要使他记下来的这串二进制数最小。 考试...

HDU 5335 Walk Out

HDU 5335 Walk Out

HDU 5335 Walk Out BFS + 贪心 2015 Multi-University Training Contest 4 1009

HDU 5335 Walk Out BFS + 贪心 2015 Multi-University Training Contest 4 1009

hdu 5335 Walk Out

官方解析: If we require that the explorer could only move downward or rightward, this problem will ...

hdu 5335 Walk Out 搜索+贪心

Walk Out Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total S...

HDU 5335 Walk Out

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5335 题意:给出一个n*m的矩阵,都是由0和1组成,从(1,1)走到(n,m),每一步的数字...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)