# Hdu-5335 Walk Out (BFS+贪心)

225人阅读 评论(0)

Problem Description
In an nm maze(迷失), the right-bottom corner is the exit (position (n,m) is the exit). In every position of this maze, there is either a 0 or a 1 written on it.

An explorer gets lost in this grid. His position now is (1,1), and he wants to go to the exit. Since to arrive at the exit is easy for him, he wants to do something more difficult. At first, he'll write down the number on position (1,1). Every time, he could make a move to one adjacent(邻近的) position (two positions are adjacent if and only if they share an edge). While walking, he will write down the number on the position he's on to the end of his number. When finished, he will get a binary(二进制的) number. Please determine the minimum(最小的) value of this number in binary system.

Input
The first line of the input(投入) is a single integer(整数) T (T=10), indicating(表明) the number of testcases.

For each testcase, the first line contains two integers n and m (1n,m1000). The i-th line of the next n lines contains one 01 string of length m, which represents i-th row of the maze(迷宫).

Output
For each testcase, print the answer in binary(二进制的) system. Please eliminate(消除) all the preceding(领先) 0 unless the answer itself is 0 (in this case, print 0 instead).

Sample Input
2
2 2
11
11
3 3
001
111
101

Sample Output
111
101

Author
XJZX

Source

Recommend
wange2014   |   We have carefully selected several similar problems for you:  5711 5710 5709 5708 5707

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int f[4][2] = {{1,0},{-1,0},{0,1},{0,-1}};
char S[1005][1005];
struct thing
{
int x,y,v,f;
} q[1000007],Nq[1000007];
int T,n,m,s,t,ans[2010];
bool jud[1005][1005],F[2010];
int main()
{
scanf("%d",&T);
while(T--)
{
memset(jud,0,sizeof(jud));
memset(F,0,sizeof(F));
scanf("%d%d",&n,&m);
for(int i = 1;i <= n;i++) scanf("%s",S[i]+1);
if(S[1][1] == '0')
{
s = 1,t = 2;
q[s].x = 1,q[s].y = 1;
jud[1][1] = true;
int Max = 2;
while(s != t)
{
for(int k = 0;k < 4;k++)
{
int Nx = q[s].x + f[k][0],Ny = q[s].y + f[k][1];
if(Nx && Nx <= n && Ny && Ny <= m && S[Nx][Ny] == '0')
{
q[t].x = Nx;
q[t].y = Ny;
Max = max(Max,Nx+Ny);
if(!jud[q[t].x][q[t].y])
{
jud[q[t].x][q[t].y] = true;
t++;
}
}
}
s++;
}
t--;
s = 1;
bool flag = false;
while(t)
{
if(q[t].x == n && q[t].y == m)
{
cout<<0<<endl;
flag = true;
break;
}
if (q[t].x+q[t].y == Max)
{
if(q[t].x < n)
{
Nq[s].x = q[t].x+1;
Nq[s].y = q[t].y;
if(!jud[Nq[s].x][Nq[s].y])
{
Nq[s].f = 0;
jud[Nq[s].x][Nq[s].y] = true;
s++;
}
}
if(q[t].y < m)
{
Nq[s].x = q[t].x;
Nq[s].y = q[t].y+1;
if(!jud[Nq[s].x][Nq[s].y])
{
Nq[s].f = 0;
jud[Nq[s].x][Nq[s].y] = true;
s++;
}
}
}
t--;
}
if(flag) continue;
t = s;
s = 1;
}
else
{
s = 1,t = 2;
Nq[s].x = 1;
Nq[s].y = 1;
Nq[s].f = 0;
jud[1][1] = true;
}
while(s != t)
{
if(F[Nq[s].x+Nq[s].y] && S[Nq[s].x][Nq[s].y] == '1')
{
s++;
continue;
}
if(Nq[s].x < n)
{
int Nx = Nq[s].x+1,Ny = Nq[s].y;
if(!jud[Nx][Ny])
{
jud[Nx][Ny] = true;
Nq[t].x = Nx;
Nq[t].y = Ny;
Nq[t].f = s;
if(S[Nx][Ny] == '0') F[Nx+Ny] = true;
t++;
}
}
if(Nq[s].y < m)
{
int Nx = Nq[s].x,Ny = Nq[s].y+1;
if(!jud[Nx][Ny])
{
jud[Nx][Ny] = true;
Nq[t].x = Nx;
Nq[t].y = Ny;
Nq[t].f = s;
if(S[Nx][Ny] == '0') F[Nx+Ny] = true;
t++;
}
}
s++;
}
for(int i = t-1;i;i--)
if(Nq[i].x == n && Nq[i].y == m)
{
int now = i,cnt = 0;
while(now)
{
ans[++cnt] = S[Nq[now].x][Nq[now].y];
now = Nq[now].f;
}
for(int j = cnt;j;j--) cout<<char(ans[j]);
cout<<endl;
break;
}
}
} 

0
0

个人资料
• 访问：111284次
• 积分：4547
• 等级：
• 排名：第7749名
• 原创：363篇
• 转载：2篇
• 译文：0篇
• 评论：42条
阅读排行
最新评论