Hdu-5335 Walk Out (BFS+贪心)

原创 2016年05月30日 17:04:56
Problem Description
In an nm maze(迷失), the right-bottom corner is the exit (position (n,m) is the exit). In every position of this maze, there is either a 0 or a 1 written on it.

An explorer gets lost in this grid. His position now is (1,1), and he wants to go to the exit. Since to arrive at the exit is easy for him, he wants to do something more difficult. At first, he'll write down the number on position (1,1). Every time, he could make a move to one adjacent(邻近的) position (two positions are adjacent if and only if they share an edge). While walking, he will write down the number on the position he's on to the end of his number. When finished, he will get a binary(二进制的) number. Please determine the minimum(最小的) value of this number in binary system.
 

Input
The first line of the input(投入) is a single integer(整数) T (T=10), indicating(表明) the number of testcases.

For each testcase, the first line contains two integers n and m (1n,m1000). The i-th line of the next n lines contains one 01 string of length m, which represents i-th row of the maze(迷宫).
 

Output
For each testcase, print the answer in binary(二进制的) system. Please eliminate(消除) all the preceding(领先) 0 unless the answer itself is 0 (in this case, print 0 instead).
 

Sample Input
2 2 2 11 11 3 3 001 111 101
 

Sample Output
111 101
 

Author
XJZX
 

Source
 

Recommend
wange2014   |   We have carefully selected several similar problems for you:  5711 5710 5709 5708 5707


题意:给你一个n*m的零一矩阵,起点在左上角终点在右下角,没走过一步记录下脚下的数字,最后求按二进制系统 最小的路径。


分析:考虑起始位置是不是0,若是0则BFS出所有离起点曼哈顿距离最远的点否则以(1,1)作为起点,BFS最小路径。

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int f[4][2] = {{1,0},{-1,0},{0,1},{0,-1}};
char S[1005][1005];
struct thing
{
	int x,y,v,f;
} q[1000007],Nq[1000007];
int T,n,m,s,t,ans[2010];
bool jud[1005][1005],F[2010];
int main()
{
	scanf("%d",&T);
	while(T--)
	{
		memset(jud,0,sizeof(jud));
		memset(F,0,sizeof(F));
		scanf("%d%d",&n,&m);
		for(int i = 1;i <= n;i++) scanf("%s",S[i]+1);
		if(S[1][1] == '0')
		{
			s = 1,t = 2;
			q[s].x = 1,q[s].y = 1;
			jud[1][1] = true;
			int Max = 2;
			while(s != t)
			{
				for(int k = 0;k < 4;k++)
				{
					int Nx = q[s].x + f[k][0],Ny = q[s].y + f[k][1];
					if(Nx && Nx <= n && Ny && Ny <= m && S[Nx][Ny] == '0')
					{
						q[t].x = Nx;
						q[t].y = Ny;
						Max = max(Max,Nx+Ny);
						if(!jud[q[t].x][q[t].y])
						{
							jud[q[t].x][q[t].y] = true;
							t++;
						}
					}
				}
				s++;
			}
			t--;
			s = 1;
			bool flag = false;
			while(t)
			{
				if(q[t].x == n && q[t].y == m) 
				{
					cout<<0<<endl;
					flag = true;
					break;
				}
				if (q[t].x+q[t].y == Max)
				{
					if(q[t].x < n)
					{
						Nq[s].x = q[t].x+1;
						Nq[s].y = q[t].y;
						if(!jud[Nq[s].x][Nq[s].y])
						{
							Nq[s].f = 0;
							jud[Nq[s].x][Nq[s].y] = true;
							s++;
						}
					} 
					if(q[t].y < m)
					{
						Nq[s].x = q[t].x;
						Nq[s].y = q[t].y+1;
						if(!jud[Nq[s].x][Nq[s].y])
						{
							Nq[s].f = 0;
							jud[Nq[s].x][Nq[s].y] = true;
							s++; 
						}
					}
				}
				t--;
			}
			if(flag) continue;
			t = s;
			s = 1;
		}
		else 
		{
			s = 1,t = 2;
			Nq[s].x = 1;
			Nq[s].y = 1;
			Nq[s].f = 0;
			jud[1][1] = true;
		}
		while(s != t)
		{
			if(F[Nq[s].x+Nq[s].y] && S[Nq[s].x][Nq[s].y] == '1') 
			{
				s++;
				continue;
			}
			if(Nq[s].x < n)
			{
				int Nx = Nq[s].x+1,Ny = Nq[s].y;
				if(!jud[Nx][Ny])
				{
					jud[Nx][Ny] = true;
					Nq[t].x = Nx;
					Nq[t].y = Ny;
					Nq[t].f = s;
					if(S[Nx][Ny] == '0') F[Nx+Ny] = true;
					t++;
				}
			}
			if(Nq[s].y < m)
			{
				int Nx = Nq[s].x,Ny = Nq[s].y+1;
				if(!jud[Nx][Ny])
				{
					jud[Nx][Ny] = true;
					Nq[t].x = Nx;
					Nq[t].y = Ny;
					Nq[t].f = s;
					if(S[Nx][Ny] == '0') F[Nx+Ny] = true;
					t++;
				}
			}
			s++;
		}
		for(int i = t-1;i;i--)
		 if(Nq[i].x == n && Nq[i].y == m) 
		 {
		 	int now = i,cnt = 0;
			while(now)
			{
				ans[++cnt] = S[Nq[now].x][Nq[now].y];
				now = Nq[now].f;
			} 
			for(int j = cnt;j;j--) cout<<char(ans[j]);
			cout<<endl;
		 	break;
		 }
	}	
} 



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

HDU 5335 Walk Out BFS + 贪心 2015 Multi-University Training Contest 4 1009

HDU 5335 Walk Out BFS + 贪心 2015 Multi-University Training Contest 4 1009
  • NNDXNM
  • NNDXNM
  • 2015年07月30日 22:41
  • 494

hdu5335Walk Out bfs+贪心

//n行长度为m的01串, //从(1,1)走到(n,m)的所经过的点中形成的二进制数最小的为多少 //对于第一位是1,则只能往下和往右走, //每次处理距离终点距离一样的点,如果这样的点中有0那么只...
  • cq_pf
  • cq_pf
  • 2015年08月05日 09:19
  • 409

多校第四场 1009 hdu 5335 Walk Out(bfs+贪心)

题目连接:hdu 5335题目大意:给出一个01矩阵,从左上角走到右下角,标记路径,问路径得到的二进制数最小是多少?题目分析: 利用bfs找出到达右下角的曼哈顿距离最近的为0的点,因为当出现1之后,一...

5335Walk Out(贪心+bfs)

/***************************************** Author :Crazy_AC(JamesQi) Time :2016 File Nam...

HDU 5335 walk out(特殊bfs)

题意:在一个只有‘0’和‘1’的矩阵中,找一条从(0,0)到(n,m)的字典序最小的一个路径。 做法:bfs。但是不能每条路径都搜,要按照一定层次的搜。如果(0,0)是‘0’,就从(0,0)开始找一...

hdu 5335 Walk Out(dfs+bfs)

解析: 求从坐标(1,1)(1,1)到(n,n)(n,n)的路径中,所能得到的二进制数最小是什么。 解析: 要分情况讨论。 1. 如果(1,1)(1,1)是11的情况,那么这种情况用bf...

hdu 5335 Walk Out 搜索+贪心

Walk Out Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total S...

HDU 5335 Walk Out (搜索+贪心,超详解)经典

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5335 题面: Walk Out Time Limit: 2000/1000 MS (...

HDU 5335 Walk Out(BFS+BFS) 经典 2015 Multi-University Training Contest 4

Walk Out Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total...

HDU 5335 Walk Out

Problem Description In an n∗m maze, the right-bottom corner is the exit (position (n,m) is the ex...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Hdu-5335 Walk Out (BFS+贪心)
举报原因:
原因补充:

(最多只允许输入30个字)