WZJRJ28

为了看到更大的世界

Hdu-5335 Walk Out (BFS+贪心)

Problem Description
In an nm maze(迷失), the right-bottom corner is the exit (position (n,m) is the exit). In every position of this maze, there is either a 0 or a 1 written on it.

An explorer gets lost in this grid. His position now is (1,1), and he wants to go to the exit. Since to arrive at the exit is easy for him, he wants to do something more difficult. At first, he'll write down the number on position (1,1). Every time, he could make a move to one adjacent(邻近的) position (two positions are adjacent if and only if they share an edge). While walking, he will write down the number on the position he's on to the end of his number. When finished, he will get a binary(二进制的) number. Please determine the minimum(最小的) value of this number in binary system.
 

Input
The first line of the input(投入) is a single integer(整数) T (T=10), indicating(表明) the number of testcases.

For each testcase, the first line contains two integers n and m (1n,m1000). The i-th line of the next n lines contains one 01 string of length m, which represents i-th row of the maze(迷宫).
 

Output
For each testcase, print the answer in binary(二进制的) system. Please eliminate(消除) all the preceding(领先) 0 unless the answer itself is 0 (in this case, print 0 instead).
 

Sample Input
2 2 2 11 11 3 3 001 111 101
 

Sample Output
111 101
 

Author
XJZX
 

Source
 

Recommend
wange2014   |   We have carefully selected several similar problems for you:  5711 5710 5709 5708 5707


题意:给你一个n*m的零一矩阵,起点在左上角终点在右下角,没走过一步记录下脚下的数字,最后求按二进制系统 最小的路径。


分析:考虑起始位置是不是0,若是0则BFS出所有离起点曼哈顿距离最远的点否则以(1,1)作为起点,BFS最小路径。

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int f[4][2] = {{1,0},{-1,0},{0,1},{0,-1}};
char S[1005][1005];
struct thing
{
	int x,y,v,f;
} q[1000007],Nq[1000007];
int T,n,m,s,t,ans[2010];
bool jud[1005][1005],F[2010];
int main()
{
	scanf("%d",&T);
	while(T--)
	{
		memset(jud,0,sizeof(jud));
		memset(F,0,sizeof(F));
		scanf("%d%d",&n,&m);
		for(int i = 1;i <= n;i++) scanf("%s",S[i]+1);
		if(S[1][1] == '0')
		{
			s = 1,t = 2;
			q[s].x = 1,q[s].y = 1;
			jud[1][1] = true;
			int Max = 2;
			while(s != t)
			{
				for(int k = 0;k < 4;k++)
				{
					int Nx = q[s].x + f[k][0],Ny = q[s].y + f[k][1];
					if(Nx && Nx <= n && Ny && Ny <= m && S[Nx][Ny] == '0')
					{
						q[t].x = Nx;
						q[t].y = Ny;
						Max = max(Max,Nx+Ny);
						if(!jud[q[t].x][q[t].y])
						{
							jud[q[t].x][q[t].y] = true;
							t++;
						}
					}
				}
				s++;
			}
			t--;
			s = 1;
			bool flag = false;
			while(t)
			{
				if(q[t].x == n && q[t].y == m) 
				{
					cout<<0<<endl;
					flag = true;
					break;
				}
				if (q[t].x+q[t].y == Max)
				{
					if(q[t].x < n)
					{
						Nq[s].x = q[t].x+1;
						Nq[s].y = q[t].y;
						if(!jud[Nq[s].x][Nq[s].y])
						{
							Nq[s].f = 0;
							jud[Nq[s].x][Nq[s].y] = true;
							s++;
						}
					} 
					if(q[t].y < m)
					{
						Nq[s].x = q[t].x;
						Nq[s].y = q[t].y+1;
						if(!jud[Nq[s].x][Nq[s].y])
						{
							Nq[s].f = 0;
							jud[Nq[s].x][Nq[s].y] = true;
							s++; 
						}
					}
				}
				t--;
			}
			if(flag) continue;
			t = s;
			s = 1;
		}
		else 
		{
			s = 1,t = 2;
			Nq[s].x = 1;
			Nq[s].y = 1;
			Nq[s].f = 0;
			jud[1][1] = true;
		}
		while(s != t)
		{
			if(F[Nq[s].x+Nq[s].y] && S[Nq[s].x][Nq[s].y] == '1') 
			{
				s++;
				continue;
			}
			if(Nq[s].x < n)
			{
				int Nx = Nq[s].x+1,Ny = Nq[s].y;
				if(!jud[Nx][Ny])
				{
					jud[Nx][Ny] = true;
					Nq[t].x = Nx;
					Nq[t].y = Ny;
					Nq[t].f = s;
					if(S[Nx][Ny] == '0') F[Nx+Ny] = true;
					t++;
				}
			}
			if(Nq[s].y < m)
			{
				int Nx = Nq[s].x,Ny = Nq[s].y+1;
				if(!jud[Nx][Ny])
				{
					jud[Nx][Ny] = true;
					Nq[t].x = Nx;
					Nq[t].y = Ny;
					Nq[t].f = s;
					if(S[Nx][Ny] == '0') F[Nx+Ny] = true;
					t++;
				}
			}
			s++;
		}
		for(int i = t-1;i;i--)
		 if(Nq[i].x == n && Nq[i].y == m) 
		 {
		 	int now = i,cnt = 0;
			while(now)
			{
				ans[++cnt] = S[Nq[now].x][Nq[now].y];
				now = Nq[now].f;
			} 
			for(int j = cnt;j;j--) cout<<char(ans[j]);
			cout<<endl;
		 	break;
		 }
	}	
} 



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014258433/article/details/51539316
上一篇Hdu-5344 MZL's xor
下一篇Codeforces Round #353 (Div. 2) E. Trains and Statistic
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭