tf9: PixelCNN

这篇博客讲述了作者利用Tensorflow实现PixelCNN模型的过程,包括数据预处理,如从网上爬取并筛选妹纸图,将图片缩放至64×64像素,并去除重复图片。虽然只实现了unconditional模型,但提供了训练PixelCNN生成图像的完整代码。

 

 

使用的图片数据

我本想使用ImageNet做为图片来源,就像论文中使用的。ImageNet图像有现成的分类,抓取也容易,但是由于很多源都被防火墙屏蔽,下载速度堪忧。

我看到网上有很多爬妹纸图的Python脚本,额,我爬了几天几夜的妹纸图(特别暴露那种),额,我就想看看PixelCNN最后能生成什么鬼。

如果你懒的爬图片,可以使用我抓取的图片(分成两部分):

  • https://pan.baidu.com/s/1kVSA8z9 (密码: atqm)
  • https://pan.baidu.com/s/1ctbd9O (密码: kubu)

数据预处理

下载的图片分布在多个目录,把图片汇总到一个新目录:

 

import os
 
old_dir = 'images'
new_dir = 'girls'
if not os.path.exists(new_dir):
    os.makedirs(new_dir)
 
count = 0
for (dirpath, dirnames, filenames) in os.walk(old_dir):
    for filename in filenames:
        if filename.endswith('.jpg'):
            new_filename = str(count) + '.jpg'
            os.re
<think>嗯,用户想了解PixelCNN的相关信息和使用教程。首先,我需要回顾一下PixelCNN的基本概念和原理。根据引用[2],PixelCNN属于生成模型中的自回归模型,由DeepMind的Aaron van den Oord在2016年提出。自回归模型的特点是逐个生成数据点,比如图像中的每个像素都是基于之前生成的像素来预测的。这点在引用[4]中也有提到,PixelCNN和PixelRNN都是逐个生成像素,所以生成速度较慢,但生成的样本质量较高。 接下来,用户可能需要了解PixelCNN的工作原理。PixelCNN使用卷积神经网络来建模像素间的依赖关系,但为了避免信息泄漏,需要使用掩码卷积(Masked Convolution),确保每个像素的预测仅依赖于之前的像素。这部分可能需要结合引用[3]中的示例,说明模型如何学习图像的整体结构和风格。 然后,用户可能需要具体的使用教程,比如如何搭建和训练PixelCNN模型。这里需要考虑代码示例,可能需要使用TensorFlow或PyTorch框架。例如,可以展示如何定义掩码卷积层,构建网络结构,定义损失函数(如交叉熵损失),并进行训练。同时,需要注意生成图像时的自回归过程,逐个像素生成,这会影响生成速度,如引用[4]中提到的WaveNet也是一个自回归模型,生成语音需要较长时间。 另外,用户可能关心PixelCNN的应用场景和优化方法。根据引用[3],PixelCNN可以生成高质量的图像样本,适用于图像补全、风格迁移等任务。优化方法可能包括改进掩码设计、使用多尺度结构、结合其他模型如VAE或GAN等,如引用[2]提到的基于最大似然的模型和隐式生成模型的分类,可能可以探讨如何将PixelCNN与其他模型结合。 还需要注意引用中提到的资源,比如引用[1]中的相关论文和教程,可以推荐用户进一步阅读这些资料。同时,引用[4]提到VAE,可能用户也会对VAE感兴趣,但当前问题集中在PixelCNN上,需要保持回答的针对性。 最后,用户可能的问题包括PixelCNN与其他生成模型的比较,如GAN和VAE,优缺点是什么。例如,PixelCNN生成速度慢但样本质量高,而GAN生成速度快但训练不稳定。此外,可能的应用实例和代码实现细节也是用户关心的点。 总结来说,回答需要涵盖PixelCNN的基本原理、结构、实现步骤、应用场景以及与其他模型的对比,同时提供代码示例和进一步学习的资源,确保用户能够全面理解并实际应用PixelCNN模型。</think>### PixelCNN 深度学习模型详解及使用教程 #### 一、PixelCNN 基础概念 PixelCNN 是**自回归生成模型**的一种,由 DeepMind 的 Aaron van den Oord 于 2016 年提出[^2]。其核心思想是**逐个生成像素**,每个像素的预测依赖于之前生成的像素(类似语言模型的序列生成)。这种设计使其能捕捉图像中的局部依赖关系,生成高质量样本[^3]。 #### 二、模型原理与结构 1. **掩码卷积(Masked Convolution)** 为了确保每个像素仅依赖左侧和上方的像素,PixelCNN 使用**掩码卷积层**。掩码分为两种类型: - **类型 A 掩码**:中心像素位置权重设为 0,避免当前像素自我依赖。 - **类型 B 掩码**:允许中心像素位置权重非 0,用于后续网络层。 2. **网络结构** 典型结构包含多个掩码卷积块,每个块由以下组成: ```python # 示例:TensorFlow 中的掩码卷积层 import tensorflow as tf from tensorflow.keras.layers import Conv2D class MaskedConv2D(Conv2D): def __init__(self, mask_type, **kwargs): super(MaskedConv2D, self).__init__(**kwargs) self.mask_type = mask_type def build(self, input_shape): super(MaskedConv2D, self).build(input_shape) mask = np.ones(self.kernel.shape) mask[:, :, self.kernel.shape[2]//2 + 1:, :] = 0 # 屏蔽右下方像素 if self.mask_type == &#39;A&#39;: mask[:, :, self.kernel.shape[2]//2, :] = 0 # 屏蔽中心像素 self.kernel.assign(self.kernel * mask) ``` #### 三、使用教程(以图像生成为例) **步骤 1:数据预处理** 将图像归一化为 $[0,1]$ 范围,并量化为离散值(如 256 级)。 **步骤 2:构建模型** ```python from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Reshape inputs = Input(shape=(32, 32, 3)) x = MaskedConv2D(filters=128, kernel_size=7, mask_type=&#39;A&#39;, padding=&#39;same&#39;)(inputs) x = tf.keras.layers.ReLU()(x) for _ in range(10): x = MaskedConv2D(filters=128, kernel_size=3, mask_type=&#39;B&#39;, padding=&#39;same&#39;)(x) x = tf.keras.layers.ReLU()(x) outputs = Conv2D(filters=256, kernel_size=1)(x) # 输出每个像素的256类概率 model = Model(inputs, outputs) ``` **步骤 3:训练模型** 使用交叉熵损失函数: ```python model.compile(optimizer=&#39;adam&#39;, loss=&#39;sparse_categorical_crossentropy&#39;) model.fit(train_dataset, epochs=50) ``` **步骤 4:生成图像** 通过逐像素采样生成图像: ```python def generate_image(model, batch_size=1): image = np.zeros((batch_size, 32, 32, 3), dtype=np.float32) for i in range(32): for j in range(32): for c in range(3): logits = model.predict(image)[:, i, j, c, :] pixel = tf.random.categorical(logits, 1).numpy() image[:, i, j, c] = pixel / 255.0 return image ``` #### 四、关键特点与优化方向 1. **优点** - 显式建模像素依赖,生成质量高[^3] - 避免 GAN 的训练不稳定问题 2. **缺点** - 生成速度慢(需 $O(N^2)$ 时间,N 为像素数)[^4] - 难以建模长程依赖 3. **优化方法** - **多尺度结构**:先生成低分辨率图像,再逐步细化 - **并行化采样**:通过条件预测加速生成 - **结合 VAE**:使用变分自编码器学习潜在表示[^1] #### 五、应用场景 - **图像补全**:修复图像缺失部分 - **风格迁移**:学习特定艺术风格生成 - **语音合成**:如 WaveNet(扩展至音频领域)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MachineLP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值