AIGC实战——像素卷积神经网络
0. 前言
像素卷积神经网络 (Pixel Convolutional Neural Network
, PixelCNN
) 是于 2016
年提出的一种图像生成模型,其根据前面的像素预测下一个像素的概率来逐像素地生成图像,模型可以通过自回归的方式进行训练以生成图像。在本节中,将使用 Keras
实现 PixelCNN
模型并将其应用于图像数据生成中。
1. PixelCNN 工作原理
为了理解 PixelCNN
,我们需要介绍两个关键技术:掩码卷积层 (Masked Convolutional Layer
) 和残差块 (Residual Block
)。
1.1 掩码卷积层
我们已经知道,卷积层可以通过应用一系列卷积核从图像中提取特征。在特定像素点处,卷积层的输出是卷积核权重与以该像素为中心的区域上的值的加权和。通过应用一系列卷积层可以检测到图像中的边缘、纹理以及在更深层的形状和高级特征。
虽然卷积层在特征检测中十分有效,但无法直接用于自回归模型&#