- 博客(125043)
- 资源 (6)
- 收藏
- 关注

原创 万字详解:36岁中国程序员未来三十年人生规划2025-2055
中国程序员36岁后的30年人生规划 36岁的中国程序员正处于职业与人生的关键转折点。面对技术迭代、AI崛起和行业变革,未来30年规划应分三阶段推进: 36-40岁(转型期):选择技术深耕或管理转型,聚焦AI、云计算等新兴领域,突破职业瓶颈,提升软技能。 41-50岁(黄金期):发展多元化职业路径,打造个人品牌,建立副业与投资组合,应对职业风险。 51-65岁(价值期):转向咨询、教育等柔性工作,参与公益活动,实现经验传承与人生价值。规划需兼顾技术敏感度、财务稳健和生活平衡,在快速变化的行业中保持持续竞争力与
2025-07-07 01:23:20
4336
13

原创 《Agentic AI 实战》第7章 DeepResearcher:基于MCP和browser-use实现深度研究Agent
DeepResearcher:基于MCP与浏览器自动化的深度研究Agent DeepResearcher是一个结合MCP(Model Context Protocol)和browser-use技术的智能研究Agent系统,实现了网络搜索、学术论文分析、网页内容提取与结构化报告生成的全流程自动化。系统采用分布式微服务架构,包含研究服务器、客户端服务器、LangGraph工作流和Streamlit前端等核心组件。 技术亮点包括: 通过MCP协议标准化连接LLM与外部工具 使用browser-use技术进行深度网
2025-06-23 23:10:15
1073

原创 程序员职业生涯系列:关于技术能力的思考与总结
引子儒、释(佛)、道三家思想:释(佛家):处理好人与心的关系,我们要战胜自己;儒(儒家):处理好人与人的关系,我们要团结好他人;道(道家):处理好人与自然的关系,我们应该顺势而为。明人陆绍珩《醉古堂剑扫》自叙有云:一愿识尽人间好人,二愿读尽世间好书,三愿看尽世间好山水。或曰:静则安能,但身到处,莫放过耳。旨哉言乎!余性懒,逢世一切炎热争逐之场,了不关情。惟是高山流水,任意所如,遇翠丛紫莽,竹林芳径......
2022-08-29 10:00:40
133946
241
原创 大数据领域数据中台的分布式存储架构
数据中台作为企业数据资产的核心管理平台,其分布式存储架构是支撑"统一数据视图、高效数据访问、弹性资源调度"的底层基石。本文从第一性原理出发,拆解数据中台对存储系统的核心需求(多模态数据统一、高可用、低延迟、多租户隔离),构建了"统一存储层+元数据管理+资源调度"的三层架构模型。通过分析HDFS、对象存储、分布式数据库等存储引擎的适配逻辑,结合阿里巴巴OceanBase、腾讯COS等实际案例,阐述了分布式存储架构在数据中台中的实现机制与优化策略。
2025-09-16 14:05:43
62
原创 从入门到精通:大数据挖掘实战指南
大数据挖掘的核心目标是从海量数据中提取「可行动的模式」描述性分析(What is):总结数据的特征(如用户画像:「25-35岁女性,月收入1-2万,喜欢美妆」);预测性分析(What will be):预测未来趋势(如「该用户下个月会购买手机的概率是85%」);处方性分析(What should be):给出决策建议(如「向该用户推荐iPhone 15,转化率提升30%」)。预测用户是否会购买某款商品(二分类任务)。
2025-09-16 12:53:58
312
原创 提示工程架构师必知:提升生成效率的10个技巧
准确性:输出符合用户需求(比如“写一篇科技博客” vs “写一篇面向程序员的科技博客”);简洁性:没有冗余信息(比如不需要的形容词、无关的例子);低迭代率:不需要反复修改提示(比如改3次就能得到满意结果,而不是10次)。结构化思维:能把模糊的需求转化为结构化的提示;模型认知:了解不同模型的特性,选择适合的模型;用户思维:以“用户需求”为中心,收集反馈优化提示;迭代思维:接受“提示不是完美的”,通过持续迭代优化;工具能力。
2025-09-16 11:46:23
296
原创 3位大厂AI架构师告诉你:职业发展中最该深耕的2个技术领域
高效训练与推理的本质是在“模型性能”(accuracy、泛化能力)、“资源消耗”(算力、内存、时间)、“部署成本”(延迟、吞吐量)之间找到最优平衡。训练效率:如何用更少的GPU/TPU hours训练出更大的模型?推理效率:如何让大模型在普通GPU甚至CPU上快速运行?资源利用率:如何避免分布式训练中的“空闲算力”(如GPU内存浪费、通信等待)?AI系统工程化的本质是将AI模型转化为可稳定运行、可监控、可维护的生产系统可靠性。
2025-09-16 10:45:53
376
原创 实时大数据处理:架构设计与最佳实践
实时销售额Dashboard停滞10分钟!与此同时,推荐系统的转化率骤降——用户的实时点击行为没有被及时处理,推荐的商品还是30分钟前的热门款。这不是虚构的场景,而是现代企业每天都可能面临的“实时危机”。在数字化时代,“实时性”已经从“加分项”变成了“生存底线”:直播的弹幕互动需要毫秒级响应、金融反欺诈需要秒级识别、工业设备的预测性维护需要分钟级预警。传统的“批处理+离线分析”模式(像“每天晚上算一遍昨天的账”)早已无法满足需求,实时大数据处理成为了企业的核心竞争力。实时大数据处理的核心挑战是什么?
2025-09-16 09:38:20
190
原创 AI应用架构师必看:跨模态AI系统的异构计算架构设计
我们使用BERT作为文本编码器(NPU处理),ResNet-50作为图像编码器(GPU处理),并添加投影层将特征映射到同一语义空间。# 取[CLS] token的特征# 投影到统一语义空间# 归一化(方便计算余弦相似度)# 移除最后一层全连接层# 提取图像特征# 投影到统一语义空间# 归一化。
2025-09-16 08:16:24
571
原创 大数据赋能:用户画像在营销中的应用策略
用户画像的价值在于将“模糊的用户群体”转化为“清晰的个体特征”用户识别:区分“潜在用户”“忠诚用户”“流失用户”,避免资源浪费;需求预测:通过用户行为(如浏览历史、搜索关键词)预测其未来需求(如“近期可能购买手机”);个性化触达:根据用户偏好(如“喜欢简约风格”)定制营销内容(如邮件、广告),提升转化率。
2025-09-16 01:40:53
334
原创 低代码数据集成平台选型指南:适合企业的才是最好的
本文的目的不是推荐“最好的”低代码数据集成平台,而是帮你找到“最适合自己企业的”——就像给孩子选玩具收纳箱,要看家里有多少玩具、孩子会不会用、放在哪里合适。范围覆盖中小企业到大型企业的选型场景,重点解决“不知道自己要什么”“怕选贵了”“担心不好用”三大痛点。文章分为“为什么需要低代码数据集成”(背景)、“低代码数据集成是什么”(核心概念)、“选平台像选收纳箱:看这5个维度”(选型关键)、“实战:用低代码平台整合超市数据”(案例)、“未来趋势:收纳箱会变‘智能管家’吗?
2025-09-16 00:18:58
534
原创 大数据领域如何优化Zookeeper性能
在当今数据爆炸的时代,大数据技术栈已成为企业数字化转型的核心基础设施。而Apache Zookeeper作为分布式系统的"分布式协调中心",在Hadoop、Kafka、Flink、HBase等关键组件中扮演着不可或缺的角色——它管理集群元数据、协调分布式锁、实现配置同步、监控节点存活状态。
2025-09-15 22:57:02
257
原创 Agentic AI在NLP提示工程中的7个典型应用案例
在人工智能迅猛发展的今天,Agentic AI(智能体AI)正以前所未有的方式重塑NLP提示工程的 landscape。本文深入探讨了Agentic AI如何通过赋予AI系统自主性、目标导向性和环境交互能力,彻底改变了传统提示工程的局限。我们详细剖析了7个典型应用案例——从智能客服对话代理到多文档知识图谱构建,从代码生成助手到跨模态内容创作,每个案例都包含实际应用场景、技术架构、实现步骤、完整代码示例和效果评估。
2025-09-15 21:56:30
438
原创 Zookeeper与Kubernetes集成:云原生大数据架构
分布式协调与容器编排融合:如何在Kubernetes的容器编排环境中,充分发挥Zookeeper的分布式协调优势,实现大数据应用的高效运行。例如,在大数据集群中,各个节点需要通过Zookeeper进行协调同步,而Kubernetes需要对这些节点的容器进行有效管理,两者如何协同工作是关键问题。资源管理与调度:在云原生大数据架构中,Zookeeper和Kubernetes都涉及到资源的管理和调度。
2025-09-15 20:56:00
493
原创 独立开发者如何在GitHub开源中实现创富目标
想象一下:你深夜写的代码,不仅被全球开发者使用,还能每月自动到账一笔收入,让你既能专注热爱的技术,又不用为生计发愁——这不是梦想,而是越来越多独立开源开发者的真实生活。本文的目的,就是帮你打通"写代码"到"赚钱"的最后一公里。我们不聊空泛的理论,只讲能落地的方法:从如何选一个"能赚钱的开源项目",到怎么让用户愿意为你的代码付费,再到如何平衡免费与商业利益。范围覆盖GitHub上最主流的6种开源创富模式,以及从0到1的完整操作流程。买菜前的准备(背景与核心概念):认识开源创富的基本逻辑选什么菜。
2025-09-15 19:48:26
594
原创 从京东AI架构师那里听到的:他们正在攻关的5个新前沿AI方向
本文作者为资深AI技术博主,曾任职于头部互联网公司算法团队,专注于大模型、推荐系统与隐私计算领域,拥有10年AI技术落地经验。如需交流,可关注公众号"AI技术前线"。
2025-09-15 18:36:41
855
原创 从理论到实践:大数据特征工程完整指南
机器学习模型的效果,80%取决于特征工程,20%取决于算法本身”。但很多人学机器学习时,总盯着“调参”“炼丹”,却忽略了最基础的“特征准备”——就像学做饭时先学颠锅,却没学怎么挑新鲜蔬菜。帮你建立“从原始数据到可用特征”的完整思维链,范围覆盖大数据场景下的特征工程全流程(数据清洗、提取、选择、变换),并通过真实项目实战让你“能动手、会落地”。核心概念:用“挑西瓜”的故事讲透“特征”“特征工程”是什么;流程拆解:一步步讲清“数据清洗→提取→选择→变换”的逻辑;算法与代码。
2025-09-15 17:14:46
612
原创 一文解析!提示工程云原生架构设计的关键要点
假设你开了一家AI咖啡馆——店里没有人类服务员,全靠AI机器人接待顾客。你的核心竞争力是:AI能根据顾客的需求推荐咖啡(比如"给加班的人推荐双倍浓缩"),还能记住老顾客的喜好(比如"张三每次都要加香草糖浆")。改提示太麻烦:想加新饮品"南瓜 spice 拿铁",得把所有AI机器人的程序重新写一遍,耗时3小时;顾客多了就崩溃:周末上午10点涌进20个顾客,AI机器人响应变慢,有的直接报错;记不住老顾客:张三第二次来,AI又问"要不要加香草糖浆",张三吐槽"你根本没记住我!这些问题的本质,其实是。
2025-09-15 15:46:34
554
原创 资深提示工程架构师分享:提升提示适应性的6个有效方法
你有没有过这样的经历?用AI写文案时,第一次输入“写个奶茶店的宣传语”,AI输出了不错的结果;但第二次你说“写个面向Z世代的国潮奶茶宣传语,要带点校园回忆”,AI却还是输出了通用的“口感丝滑,好喝到爆”——固定提示就像只会念脚本的演员,无法应对舞台上的变化。作为一名深耕提示工程5年的架构师,我见过太多团队陷入“提示调试循环”:为每个场景写新提示、为每个用户改模板,最终陷入“提示数量爆炸”的困境。而解决这个问题的核心,是让提示具备适应性。
2025-09-15 14:18:22
446
原创 微服务架构下的AI性能优化:10个技巧,解决服务间延迟问题
微服务架构下的AI性能优化,核心是减少服务间的通信开销。本文的10个技巧覆盖了协议选择、缓存、流量调度、异步处理、数据压缩、模型优化技巧解决的问题延迟降低比例用gRPC替代RESTful序列化/传输延迟高50%本地缓存重复请求导致无效调用40%服务网格流量本地化跨节点/AZ调用延迟高80%异步化调用同步等待导致延迟累积80%数据压缩大体积数据传输慢60%优化服务发现服务查找时间长98%边车模式非业务逻辑占用CPU20%模型量化权重/张量体积大75%
2025-09-15 13:01:49
511
原创 智能数字营销平台架构中的合规设计:AI应用架构师如何应对GDPR等法规?
应用层是“用户与系统交互的界面”,也是用户权利实现的“最后一公里”(如删除数据、获取数据)。架构师需要设计用户权利处理流程,让用户能够“方便、快速”地行使权利。智能数字营销的核心是“理解用户”,而合规设计的核心是“尊重用户”。作为AI应用架构师,我们的职责不是“用技术规避法规”,而是“用技术实现法规的精神”——让智能营销“既聪明,又有温度”。“合规不是‘天花板’,而是‘地基’——只有地基牢固,智能营销的大厦才能越建越高。
2025-09-15 12:01:18
577
原创 提示工程架构师秘籍:打造提示系统开发者社区爆款运营模式
在ChatGPT、文心一言等大模型普及的今天,“提示词”已经成为人类与AI交互的核心语言。但多数开发者仍在“试错式”写提示:比如想让AI生成营销文案,有人写“帮我写个卖手机的文案”,结果AI输出平淡无奇;有人则会写“假设你是苹果公司的营销总监,针对25-30岁的都市白领,强调iPhone 15的‘灵动岛’功能和环保材质,用‘科技与自然共生’的主题,写一篇150字的社交媒体文案”,结果AI输出的内容更精准、有感染力。提示工程的本质:是“将人类需求转化为AI可理解的指令”的技术。而提示系统。
2025-09-15 10:44:49
771
原创 独立开发者开源项目,引导资金的关键步骤
没有稳定的资金支持,即便是最有潜力的项目也可能夭折,或者开发者不得不忍痛割爱,将宝贵的时间转向能带来收入的商业项目。无论你是刚刚起步的开源新人,还是已经拥有一定用户基础但希望获得更多支持的成熟项目维护者,都能从中找到适合自己的方法和灵感,让你的开源项目获得应有的回报,实现可持续发展。成功的开源项目融资能够让你摆脱经济上的后顾之忧,将更多精力投入到项目的创新和改进上,从而形成"项目改进 -> 用户增长 -> 资金增加 -> 项目更好"的良性循环,最终惠及整个开源社区和用户。祝你在开源融资的道路上取得成功!
2025-09-15 09:00:40
849
原创 大数据领域数据服务:实现数据的深度分析
数据服务(Data Service):是一套“端到端的数据管理体系”,负责数据的采集、存储、处理、共享、可视化,目标是让数据“可访问、可理解、可使用”。深度分析(Deep Analysis):是基于数据的高级价值挖掘,包括机器学习、统计建模、预测分析、关联挖掘等,目标是回答“为什么?会怎样?该怎么做?”的问题(区别于“是什么?”的 descriptive analysis)。为什么用户会流失?如何降低流失率?数据服务支撑深度分析├─ 核心逻辑:管道与目的地├─ 数据服务组件。
2025-09-15 02:25:10
473
原创 别眨眼!大数据BI工具的特色功能展示
DAX(Data Analysis Expressions)是Power BI语义层的查询语言,用于定义度量值// 定义“销售额”度量值(求和事实表的Amount字段)总销售额 = SUM(Sales[Amount])// 定义“毛利率”度量值((销售额-成本)/销售额)毛利率 = DIVIDE([总销售额] - SUM(Sales[Cost]),[总销售额]// 定义“同比增长”度量值(今年销售额-去年同期销售额)/去年同期销售额同比增长 = DIVIDE(
2025-09-15 00:41:02
518
原创 从开源项目到创业公司:一个独立开发者的逆袭之路
3个月内必须做出“被100人真正使用”的产品,否则就乖乖回大厂搬砖。但一个人做产品,最大的问题是“不知道用户到底要不要”——闭门造车太容易跑偏。开源,是独立开发者最低成本的“产品验证工具”免费获客:GitHub、Gitee、技术社区天然有流量,只要项目有用,就会有人发现;真实反馈:用户会直接提Issue、PR,甚至帮你改Bug,相当于免费雇了“产品经理”和“测试工程师”;信任背书:开源代码意味着透明,用户敢用(尤其企业客户,怕闭源工具跑路)。当然,开源也有代价:代码暴露,容易被抄袭;维护社区需要时间。
2025-09-14 23:40:30
655
原创 重磅揭秘!智能资源规划AI系统,AI应用架构师的创新引擎
工厂里,机器明明有空闲,却因为工人没安排到位,导致生产延迟;物流车队,有的货车满载跑长途,有的却空车返回,浪费油钱;互联网公司,服务器在凌晨没人用的时候还开着,白白消耗电费。这些都是传统资源规划的痛点——依赖人工经验、反应慢、无法处理复杂场景。而智能资源规划AI系统在满足需求的前提下,让资源(人、财、物、时间)的利用效率最大化,成本最小化。智能资源规划的核心概念(用“生活故事”讲清楚);系统架构(像“搭积木”一样拆解);关键算法(用Python代码实现);
2025-09-14 22:32:55
590
原创 智能家居传感器数据集成与分析全攻略
感知层:智能家居的「神经末梢」,由各类传感器组成,负责采集物理世界的信号;协议适配:将不同传感器的通信协议(如Zigbee)转换为统一协议(如MQTT)的过程;数据集成:将多源、异构、低质量的数据转化为结构化、干净、语义一致的数据资产的过程;边缘计算:在传感器附近的网关/设备上进行数据处理(而非上传至云),解决实时性与带宽问题;时序数据:按时间顺序生成的数据(如每10秒的温度值),是智能家居传感器数据的核心形式。场景:当房间温度连续5秒超过30℃,且门窗关闭(无通风),触发「高温预警」。需求。
2025-09-14 20:57:29
451
原创 智能家居传感器数据集成与分析全攻略
感知层:智能家居的「神经末梢」,由各类传感器组成,负责采集物理世界的信号;协议适配:将不同传感器的通信协议(如Zigbee)转换为统一协议(如MQTT)的过程;数据集成:将多源、异构、低质量的数据转化为结构化、干净、语义一致的数据资产的过程;边缘计算:在传感器附近的网关/设备上进行数据处理(而非上传至云),解决实时性与带宽问题;时序数据:按时间顺序生成的数据(如每10秒的温度值),是智能家居传感器数据的核心形式。场景:当房间温度连续5秒超过30℃,且门窗关闭(无通风),触发「高温预警」。需求。
2025-09-14 19:28:39
547
原创 AI应用架构师必看!AI系统合规的7个关键技术,从数据到模型全覆盖
1. 定义基础模型# 2. 配置差分隐私优化器l2_norm_clip=1.0, # 梯度剪辑:控制每个微批次的梯度大小(避免噪声被放大)noise_multiplier=1.1, # 噪声乘数:越大隐私保护越强(ε越小)num_microbatches=32, # 微批次数量:将大批次拆分成小批次,计算噪声# 3. 编译模型(使用差分隐私优化器)"""生成FGSM对抗样本"""image.requires_grad = True # 计算梯度。
2025-09-14 17:34:09
648
原创 2025年,AI应用架构师如何推动企业数据治理体系从“被动合规“转向“主动价值“?
被动合规型数据治理(Reactive Compliance-driven Data Governance)是以满足监管要求为核心目标流程滞后:数据产生后,再进行分类、脱敏、审计(比如用户数据已经被用于营销活动,才发现没有做隐私脱敏);范围局限:主要关注"敏感数据"(比如个人信息、财务数据),忽略了"业务价值数据"(比如用户行为、设备传感器数据);角色割裂:由合规团队或IT团队主导,与业务团队、AI团队缺乏联动(比如合规团队制定的数据分类标准,AI团队根本看不懂);价值导向缺失。
2025-09-14 15:39:38
482
原创 2025协同创新:AI应用架构师、数学家与科研智能体如何高效协作?
想象一下,在 2025 年的一个先进科研实验室里,一项关乎攻克全球重大疾病的科研项目正在紧张进行。AI 应用架构师小李,正盯着电脑屏幕上复杂的算法架构,思考着如何让 AI 更高效地处理海量的生物医学数据。与此同时,数学家老王在一旁的黑板上奋笔疾书,推导着新的数学模型,试图为解决科研难题提供理论支持。而科研智能体小艾,一个基于人工智能的智能助手,在不断地收集、整理全球最新的科研文献,并根据项目需求提出初步的研究方向建议。然而,这看似各司其职的工作场景却暗藏挑战。
2025-09-14 14:17:43
690
原创 大数据领域数据分片:提升数据处理效率的关键
当你面对100TB的用户订单数据,试图用单台服务器处理查询时,就像让一个厨师在1小时内做完1000人的婚宴——忙到崩溃是必然结局。数据分片(Data Sharding)正是解决这个问题的“分布式烹饪术”:它将海量数据拆分成可管理的小片段,分配给多个节点并行处理,从而突破单节点的性能瓶颈。本文将用“烹饪”“分桌”“电影院选座”等生活化比喻,一步步拆解数据分片的核心逻辑:从“为什么要分片”到“怎么选分片策略”,从“一致性哈希的数学魔法”到“电商系统的实际落地”,最后展望智能分片的未来趋势。
2025-09-14 12:33:36
650
原创 大数据领域 Hive 的事务处理机制
事务的本质:事务是数据库操作的逻辑单元,它将多个操作捆绑为一个不可分割的工作单元。想象你转账的过程:从A账户扣款、向B账户存款,这两个操作必须作为一个整体成功或失败,否则会导致资金不翼而飞或凭空产生。Hive官方文档将其事务支持定义为:“允许用户执行ACID事务,包括INSERT、UPDATE、DELETE以及MERGE操作,同时保证多个并发用户对数据的安全访问”。原子性:完全支持。事务中的所有操作要么全部提交,要么在失败时全部回滚。一致性:完全支持。事务执行前后数据符合预设规则(如约束、关系)。
2025-09-14 11:11:19
764
原创 大数据领域数据中台的建设周期与规划
你是否遇到过这样的困境?业务部门要一份用户行为报表,需要跨3个系统取数,等待3天才能拿到结果;同样的“用户ID”字段,在CRM系统里是字符串,在订单系统里是整数,合并时发现数据不一致;投入百万建了数据仓库,却因为“不好用”“不贴合业务”被业务方束之高阁;想做实时推荐,却发现实时数据散落在Kafka、日志文件里,无法快速整合。这些问题的根源,不是“数据不够多”,而是“数据不可用”——传统的“烟囱式”数据架构,无法支撑数字化时代对“快速、准确、易用”的数据需求。数据中台。
2025-09-14 09:59:34
508
原创 揭秘AI应用架构师在智能金融系统设计中的高效架构方法
业务需求该智能投顾系统旨在为个人投资者提供个性化的投资建议和资产配置方案。投资者可以通过系统输入自己的财务状况、投资目标、风险承受能力等信息,系统根据这些信息为投资者推荐合适的投资产品组合,并实时跟踪投资组合的表现,提供动态调整建议。目标用户目标用户主要是普通个人投资者,包括初入投资领域的新手和有一定投资经验但希望获得更专业投资建议的用户。这些用户对投资知识的掌握程度参差不齐,需要一个简单易用、直观易懂的智能投顾平台。实施效果该智能投顾系统上线后,受到了广大用户的好评。
2025-09-14 08:31:23
871
原创 大数据与空间数据分析:打造智能供应链体系
你有没有遇到过这样的情况?楼下奶茶店的“珍珠”突然卖完,老板说“仓库没货了,要等明天送”;快递员明明说“今天到”,结果因为堵车晚了3小时;超市的“生鲜区”总有些蔬菜烂掉,因为进太多卖不完。这些问题的根源,是传统供应链“没管好空间和数据”不知道“哪些区域需求大”(空间分布);没算清“该备多少货在哪个位置”(库存优化);绕不开“实时交通和路线的坑”(路径规划)。本文的目的,就是用大数据+空间数据分析,把这些“模糊的问题”变成“可计算的答案”。需求预测→库存优化→路径规划。
2025-09-14 01:55:51
387
原创 Kappa架构与微服务:构建现代大数据系统的黄金组合
维护Lambda架构的两套系统(批处理层+Hadoop、速度层+Storm/Flink),开发成本翻倍,数据一致性难以保证?大数据系统是单体架构,新增一个流处理任务需要修改整个系统,扩展性极差?微服务普及后,传统大数据系统无法与业务微服务高效集成,数据“孤岛”严重?这些问题不是个例——在大数据技术演进中,Lambda架构曾是“标准解决方案”,但随着业务对实时性和灵活性的要求提升,其“批流分离”的设计反而成为负担。
2025-09-14 00:27:40
793
原创 提示工程架构师手把手教你:跨文化提示设计的5个关键步骤,附模板
想象你开发了一款AI旅游助手,中国用户输入“帮我规划日本东京的行程”,AI返回了“推荐独自冒险的小众路线”;而日本用户输入同样的需求,AI却推荐了“全家老小都适合的经典景点”——这不是AI笨,而是你的提示词忽略了“文化密码”。跨文化提示设计的目的,就是让AI在不同文化背景下都能“听懂”用户需求、“给出”符合文化习惯的回应。本文将聚焦5个可落地的关键步骤,覆盖从文化特征分析到提示模板生成的全流程,帮你解决“同一个提示,不同文化效果差”的痛点。准备阶段:认识“文化食材”(核心概念与文化差异)烹饪步骤。
2025-09-13 22:43:29
606
原创 《提示工程架构师:洞察提示工程行业应用前景的市场动态》
我们写这篇文章的目的,不是教你“如何写一个完美的提示词”(比如“写个奶茶文案”怎么优化),而是帮你站在架构师的高度,理解提示工程的行业价值——当企业要把大模型用在100个业务场景(客服、文案、数据分析)时,如何设计一套“可复用、可监控、可迭代”的提示体系,而不是让每个业务线都“各自为战写提示词”。提示工程的底层逻辑(不是“术”,是“道”);提示工程架构师的核心能力(不是“会写提示词”,是“会设计系统”);提示工程的行业应用场景(金融、电商、教育等真实案例);提示工程的市场动态与未来趋势。
2025-09-13 21:42:59
986
《Kotlin项目实战开发》第3章+类型系统与可空类型
2017-09-30
ClickHouse 高性能、可扩展和低成本的OLAP数据库 陈光剑 20230912
2023-09-14
Will AI Fix Work? 工作节奏超过了我们的跟上能力 人工智能有望创造一种全新的工作方式
2023-05-17
THE AI INDEX REPORT 人工智能指数报告 Measuring trends in Artificial Inte
2023-04-06
An introduction to functional programming through lambda calculus.PDF.zip
2019-09-22
Principles of programming languages by Gilles Dowek (auth.) (z-lib.org).pdf
2021-04-28
Kotlin Coroutines by Tutorials (1st Edition)
2021-04-28
A Brief History of Artificial Intelligence
2021-04-28
2024 年可以实现 AGI 吗?
2024-01-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人