- 博客(122376)
- 资源 (6)
- 收藏
- 关注

原创 《Agentic AI 实战》第7章 DeepResearcher:基于MCP和browser-use实现深度研究Agent
DeepResearcher:基于MCP与浏览器自动化的深度研究Agent DeepResearcher是一个结合MCP(Model Context Protocol)和browser-use技术的智能研究Agent系统,实现了网络搜索、学术论文分析、网页内容提取与结构化报告生成的全流程自动化。系统采用分布式微服务架构,包含研究服务器、客户端服务器、LangGraph工作流和Streamlit前端等核心组件。 技术亮点包括: 通过MCP协议标准化连接LLM与外部工具 使用browser-use技术进行深度网
2025-06-23 23:10:15
434

原创 《Agentic AI 实战》第6章 DataInsight:智能数据分析 Agent
摘要:智能数据分析Agent的实现 本文介绍了如何构建一个基于ReAct范式的智能数据分析Agent(DataInsight),能够通过自然语言完成数据库查询与可视化任务。系统实现主要包括: 环境准备:配置MySQL数据库(如salesdb)和Python依赖库,包括LangChain、SQLAlchemy和Matplotlib等工具链。 核心架构: 采用ReAct(推理-行动-反馈)循环的工作流 集成SQL查询与数据可视化功能 实现自然语言到SQL语句的自动转换 关键技术: 通过LangChain框架构建
2025-06-23 23:09:26
375

原创 《Agentic AI 实战》 第5章 ArxivExplorer:学术论文研究助手Agent
本章介绍了一个面向科研工作者的学术论文研究助手Agent——ArxivExplorer的系统设计与实现。该Agent整合arXiv开放平台数据源,采用RAG技术、向量数据库和微服务架构,提供高效的文献检索、语义分析和知识推理功能。文章详细阐述了从需求分析到系统设计的全流程,包括科研文献检索的核心痛点(检索效率低、语义理解难等)、基于微服务的模块化架构设计(数据采集、知识库构建、语义检索等核心服务),以及数据流转与API接口规范。通过Python技术栈与主流工具(LangChain、Pinecone等)的具体
2025-06-23 23:07:10
170

原创 《Agentic AI 实战》 第4章 QuickChat:基于LangChain的对话式Agent入门项目
摘要 本章介绍基于LangChain的对话式AI Agent项目QuickChat的开发过程。项目采用Python技术栈,结合LangChain、FastAPI、Redis和OpenAI等组件,实现一个具备多轮对话能力的轻量级对话助手。 架构设计方面,系统采用模块化设计,包括输入处理、对话管理、提示模板、大模型交互、会话存储和API服务等模块。核心功能包括自然语言理解与生成、多轮对话管理、会话历史存储等,并通过RESTful API提供服务。 实现细节上,项目利用LangGraph构建对话工作流,使用Mes
2025-06-23 23:06:14
75

原创 《Agentic AI 实战》第3章 AI Agent开发环境与工具链
AI Agent开发环境搭建指南 本章系统介绍了AI Agent开发所需的环境配置与工具链。主要内容包括: Python环境配置:推荐使用Python 3.10+版本,通过pyenv进行版本管理,并创建虚拟环境隔离项目依赖。 依赖管理:使用pip-tools工具规范管理项目依赖,确保开发环境的一致性。 核心工具链:详细介绍了LangChain、LangGraph等AI开发框架的功能特点,以及FastAPI、Redis等配套工具的应用场景。 开发实践:强调环境变量管理和项目结构设计的重要性,确保开发安全性及团
2025-06-23 23:04:55
53

原创 《Agentic AI 实战》第2章 大型语言模型(LLM)与提示工程基础
摘要 本章系统介绍了大型语言模型(LLM)的技术发展与选型策略,以及提示工程的核心技术。主要内容包括:主流LLM架构(如GPT、Llama、Gemini等系列)的技术特点与适用场景;LLM的关键能力与局限性分析;基于能力需求、部署方式等维度的选型指南;OpenAI和国内火山方舟模型的API调用示例;提示工程基础与高级技术(如思维链、自我反思等)的概述。为AI Agent开发提供了模型选择和提示优化的方法论基础,帮助开发者构建高效智能系统。
2025-06-23 23:04:11
49

原创 《Agentic AI 实战》第1章 AI Agent概述
摘要:AI Agent是指具备自主感知、推理、决策和行动能力的智能系统,与传统被动式AI(如分类器)相比,其核心特征包括自主性、多模态感知、复杂推理、主动执行工具调用及持续学习能力。AI Agent以LLM为核心,结合外部工具与知识库形成任务闭环,例如智能日程助手能动态协调多方需求。Agentic AI则更进一步,强调多Agent协作、自主目标设定和跨系统整合能力,适用于复杂场景(如自动化研究助手)。前者聚焦单体智能体(如客服机器人),后者构建智能体生态系统(如LangChain框架的动态任务编排)。两者分
2025-06-23 23:02:09
67

原创 程序员职业生涯系列:关于技术能力的思考与总结
引子儒、释(佛)、道三家思想:释(佛家):处理好人与心的关系,我们要战胜自己;儒(儒家):处理好人与人的关系,我们要团结好他人;道(道家):处理好人与自然的关系,我们应该顺势而为。明人陆绍珩《醉古堂剑扫》自叙有云:一愿识尽人间好人,二愿读尽世间好书,三愿看尽世间好山水。或曰:静则安能,但身到处,莫放过耳。旨哉言乎!余性懒,逢世一切炎热争逐之场,了不关情。惟是高山流水,任意所如,遇翠丛紫莽,竹林芳径......
2022-08-29 10:00:40
132948
241
原创 AI原生应用API编排:从设计到部署的全流程解析
在人工智能迅猛发展的今天,AI原生应用已从概念走向实践,成为企业数字化转型的核心驱动力。然而,构建真正强大的AI原生应用并非简单集成几个模型API那么简单,而是需要一套系统化的API编排策略,将各类AI能力与传统业务服务有机融合。本文将深入剖析AI原生应用API编排的完整生命周期,从架构设计原则到具体实现模式,从性能优化到部署运维,为技术团队提供一套全面的实践指南。
2025-07-04 09:48:07
237
原创 用户画像数据增强:AI原生技术中的5种创新方法
想象你走进一家心仪已久的精品咖啡店。店员微笑着对你说:"张先生,今天还是要一杯不加糖的冷萃咖啡和一块提拉米苏吗?我们刚到了一批哥伦比亚新豆,您可能会喜欢。“这种贴心的服务体验背后,是店员对你个人偏好的深入了解——这就是现实世界中的"用户画像”。在数字世界中,用户画像(User Profiling)扮演着类似的角色,但规模和复杂度远超咖啡店场景。它是通过收集、整合和分析用户数据,构建的用户特征的虚拟表示,是理解用户需求、行为模式和偏好的数字"身份证"。用户画像的核心价值个性化体验。
2025-07-04 09:33:44
96
原创 通信网络流量特征选择的AI算法优化
在当今数据爆炸的时代,通信网络流量正以指数级速度增长,带来了前所未有的数据处理挑战。本文深入探讨了如何利用人工智能算法优化通信网络流量的特征选择过程,这一关键步骤能够显著提升网络管理、安全检测和资源分配的效率。我们将从特征选择的基本原理出发,系统介绍传统方法的局限性,详细阐述各类AI优化算法(包括基于进化计算、深度学习和强化学习的方法)在特征选择中的应用,并通过实际案例展示这些技术如何从海量网络数据中提取有价值的"智慧信号"。
2025-07-04 09:19:21
200
原创 Gemini助力AI原生应用实现跨越式发展
在人工智能技术迅猛发展的今天,Google Gemini的出现标志着我们正迈入一个全新的AI时代。本文深入探讨了Gemini如何通过其突破性的多模态理解能力、卓越的推理能力和无缝的工具集成特性,成为推动AI原生应用实现跨越式发展的核心引擎。我们将从技术原理、架构创新、开发实践到商业应用,全方位解析Gemini如何重塑软件开发范式,以及开发者和企业如何抓住这一历史机遇,构建下一代智能应用。无论你是技术决策者、资深开发者还是AI爱好者,本文都将为你提供独到见解和实用指南,助你在AI原生应用的浪潮中抢占先机。
2025-07-04 09:03:50
128
原创 AI算力网络与通信融合,API网关开启新篇章
在人工智能与5G/6G通信技术高速发展的今天,AI算力网络与通信网络的深度融合已成为不可逆转的趋势。这一融合不仅重塑了数字基础设施的形态,更催生了新型的业务模式和应用场景。本文深入探讨了AI算力网络与通信融合的技术背景、核心挑战以及解决方案,重点分析了API网关作为这一融合过程中的关键枢纽,如何实现算力资源的智能调度、网络流量的优化管理以及异构系统的无缝协同。通过生动的比喻、详实的技术解析和实际案例,本文展示了智能API网关如何开启算力网络与通信融合的新篇章,为企业数字化转型提供新的思路和实践指南。
2025-07-04 03:48:19
528
原创 AI算力网络与通信的弹性网络:应对复杂场景的策略
在人工智能应用爆炸式增长的今天,我们面临着一个关键挑战:如何构建能够灵活应对复杂场景的AI算力网络与通信基础设施?本文深入探讨了AI算力网络与通信弹性网络的融合架构,揭示了其在应对动态负载、网络拥塞、节点故障等复杂挑战时的核心机制。通过生动的类比和实际案例,我们将解析弹性网络如何像"智能血管系统"一样,为AI算力需求提供高效、可靠的传输通道。文章详细阐述了从技术原理到实际部署的全流程,包括网络切片技术、动态资源调度算法、边缘-云端协同策略等关键技术,并提供了在自动驾驶、智能城市等复杂场景中的应用指南。
2025-07-04 03:31:03
510
原创 联邦学习与AI算力网络:通信领域的革命性技术
在数据爆炸与AI驱动的智能时代,通信网络正面临前所未有的变革压力。本文深入剖析联邦学习与AI算力网络如何成为重塑通信行业的"技术双引擎",解决数据隐私与算力分配这两大核心矛盾。我们将通过生活化的比喻、直观的图表和实用的代码示例,从技术原理、应用场景到未来趋势,全面解读这两项革命性技术如何协同工作,推动通信网络向更智能、更高效、更安全的方向演进。无论您是通信工程师、AI研究者还是技术决策者,本文都将为您打开一扇通往下一代智能通信网络的大门。
2025-07-04 03:14:30
219
原创 Web3.0时代:去中心化AI算力网络的架构设计
在人工智能与区块链技术双重浪潮的推动下,我们正站在一场算力革命的门槛上。本文深入探讨了Web3.0时代去中心化AI算力网络的架构设计,揭示了如何通过区块链技术与分布式计算的融合,构建一个开放、高效、可信且普惠的AI算力基础设施。文章从背景动机出发,解析了核心概念,详细阐述了网络架构的五大关键层次,提供了实际应用案例与实现路径,并展望了这一革命性技术对AI民主化、数据隐私保护及未来数字经济的深远影响。
2025-07-04 02:56:44
379
原创 AI原生应用领域函数调用的创新应用解析
在人工智能技术迅猛发展的今天,AI原生应用正逐渐成为软件开发的新范式。其中,函数调用技术作为连接大语言模型与外部世界的关键桥梁,正在彻底改变我们与AI交互的方式以及AI解决实际问题的能力。本文深入解析了函数调用技术的核心理念、技术原理与创新应用,揭示了它如何赋予AI"行动能力"而非仅仅"思考能力"。通过丰富的代码示例、架构设计和实战案例,我们将展示函数调用如何使AI系统能够调用工具、操作数据、与外部API交互,从而构建真正实用的智能应用。
2025-07-04 02:42:20
418
原创 探索数学领域信息教育的发展路径
想象一下,在20世纪80年代的数学课堂上,老师用粉笔在黑板上费力地画着立体几何图形,学生们则在笔记本上努力模仿,却总有一部分人无法想象出三维空间中的关系;而在今天的智能教室里,学生戴上VR眼镜,就能"走进"几何图形内部,亲手"触摸"棱与角,甚至可以改变参数实时观察图形的变化。这就是数学领域信息教育带来的革命性变化。本文的目的是系统探索数学信息教育的发展路径,具体范围包括:从理论层面明确数学信息教育的核心概念与价值,从实践层面提供可操作的实施方法与案例,从发展层面分析未来趋势与应对策略。
2025-07-04 02:25:19
291
原创 AI原生应用性能优化:上下文理解模块调优指南
在AI原生应用的开发中,上下文理解模块犹如应用的"认知中枢",负责解读、整合和利用用户交互历史与环境信息。然而,这一核心模块常常成为性能瓶颈,导致响应延迟、资源消耗过大和用户体验下降。本文将深入剖析上下文理解模块的工作原理,揭示其性能挑战的根源,并提供一套全面的调优策略。从算法优化、数据结构设计到工程实践,我们将通过生动的比喻、详实的代码示例和实际案例,展示如何将一个"反应迟缓"的上下文理解系统转变为"思维敏捷"的智能引擎。
2025-07-04 02:11:05
231
原创 AI原生应用领域链式思考:推动行业数字化转型
数据-决策鸿沟:传统系统产生海量数据但缺乏将其转化为连贯决策的能力,形成"数据丰富,洞察贫乏"的困境。据McKinsey研究,企业仅利用约29%的可用数据支持决策。复杂问题分解障碍:行业挑战日益呈现系统性、非线性特征,传统模块化设计难以处理跨域、动态关联问题。例如,供应链中断涉及物流、金融、地缘政治等多维度复杂交互。适应性创新局限:静态规则和预定义流程无法应对快速变化的市场环境,73%的数字化转型项目未能实现预期目标,主要原因是缺乏动态调整能力(Boston Consulting Group, 2023)
2025-07-04 01:54:02
612
原创 数学在信息科学领域的基础支撑作用
表示问题:如何将现实世界的对象和过程转化为可计算的数学形式?这涉及到编码理论、向量空间模型、图论表示等数学方法。例如,自然语言的表示从早期的布尔模型发展到向量空间模型,再到现在的词嵌入和上下文表示,每一步都依赖于数学表示方法的创新。计算问题:如何设计高效算法解决信息处理任务?这涉及到算法设计、计算复杂性、数值分析等数学领域。计算复杂性理论通过P/NP等概念界定了计算的理论边界,而数值分析则提供了在有限精度条件下获得近似解的方法。推理问题:如何从数据中推断出有意义的信息和知识?
2025-07-04 01:36:30
183
原创 AI原生应用开发:5个必知的提示工程技巧
维度一:意图-能力映射核心挑战:如何将模糊、抽象的人类意图精确映射为AI模型能够理解和执行的具体指令。这涉及到意图分解、概念映射和指令结构化等子问题。维度二:上下文管理核心挑战:在有限的上下文窗口内,如何最优地组织信息,平衡上下文相关性、完整性与简洁性。关键子问题包括上下文选择、信息压缩和动态窗口管理。维度三:不确定性控制核心挑战:如何在AI模型的概率输出特性下,确保应用行为的可靠性、一致性和安全性。涉及不确定性量化、错误处理和鲁棒性增强等子问题。
2025-07-04 01:20:10
657
原创 AI算力网络与通信:网络融合的创新之道
想象一下,如果将1960年代的计算能力比作一条小溪,1990年代的个人电脑时代是一条河流,那么今天的AI算力需求已经演变成了一场海啸。OpenAI的GPT-4模型训练需要约10^23次浮点运算,相当于全球所有个人电脑一年的计算量总和。这种"海啸式"的算力需求增长正以前所未有的方式重塑着计算与通信的关系。在AI大模型时代,算力已经成为像水、电一样的关键基础设施。根据斯坦福大学AI指数报告,自2012年以来,训练先进AI模型所需的计算量每3.4个月翻一番,远快于摩尔定律预测的速度。
2025-07-04 01:04:40
175
原创 打造属于你的AI原生应用领域思维框架
在大语言模型(LLM)和生成式AI技术爆发的今天,"AI原生"已从 buzzword 演变为产品竞争的核心壁垒。本文将带你超越简单的"AI功能添加"思维,系统构建一套专属于你的AI原生应用领域思维框架。我们将通过生动类比、可视化模型和实战案例,展示如何从领域本质出发,重新思考产品定义、用户体验和技术架构,最终打造真正以AI为核心驱动力的创新应用。无论你是开发者、产品经理还是创业者,这套思维框架都将帮助你在AI时代构建具有持久竞争力的产品。
2025-07-04 00:49:23
431
原创 探索AI算力网络与通信领域混合计算的应用前景
在人工智能爆发式发展的今天,算力已成为数字经济时代的核心生产力。本文深入探讨了AI算力网络与通信领域混合计算的融合趋势,揭示了这一技术融合如何打破传统计算边界,重塑智能应用的未来。通过解析算力网络的架构演进、混合计算的技术原理以及通信技术在其中的关键作用,本文展示了"云-边-端"协同计算模式如何有效解决AI应用面临的算力瓶颈、延迟挑战和能源消耗问题。文章结合实际案例,详细阐述了混合计算在智能交通、远程医疗、工业互联网等关键领域的创新应用,并展望了未来技术发展趋势与潜在挑战。
2025-07-04 00:32:33
418
原创 AI算力网络与通信:算力模型的未来走向
随着人工智能技术的飞速发展,特别是大语言模型和生成式AI的崛起,算力需求呈现指数级增长,传统的集中式算力供给模式面临严峻挑战。本文深入探讨了AI算力网络与通信技术的融合趋势,剖析了从"算力孤岛"到"算力智能电网"的演进路径。我们将系统解析算力网络的核心架构、关键技术和实现方法,通过具体案例展示算力网络在智慧医疗、自动驾驶和工业元宇宙等领域的应用,并展望了未来5-10年算力模型的发展方向,包括意图驱动的自组织网络、量子通信与经典通信融合、以及算力与数据流动性的动态平衡等前沿趋势。
2025-07-04 00:13:57
233
原创 AI原生应用开发实战:构建跨语言理解聊天机器人
在全球化与数字化深度融合的今天,语言障碍仍然是连接全球用户的主要挑战之一。本文将带您踏上构建"AI原生"跨语言聊天机器人的实战之旅,这不仅是一个翻译工具,更是一个能够理解文化背景、保持上下文连贯、支持多语言实时对话的智能系统。我们将从基础概念出发,逐步深入技术原理,通过具体代码示例和架构设计,展示如何从零开始构建这一系统。无论您是希望拓展国际业务的开发者,还是对AI多语言处理感兴趣的技术爱好者,本文都将为您提供从理论到实践的完整指南,帮助您打造真正打破语言壁垒的智能交互体验。
2025-07-03 23:55:53
463
原创 AI原生应用领域增量学习的安全保障措施
在AI原生应用蓬勃发展的今天,增量学习技术使AI系统能够像人类一样持续学习新知识,而不必每次都从零开始。然而,这种持续进化的能力也带来了独特的安全挑战。本文深入探讨了AI原生应用中增量学习面临的安全风险,系统阐述了保障增量学习安全的关键技术与策略。从数据验证到模型防护,从隐私保护到系统监控,我们将一步步解析如何构建一个既能持续学习又能抵御各种威胁的AI安全体系。通过生动的类比、实用的代码示例和真实案例分析,本文为AI工程师、安全专家和技术决策者提供了全面的增量学习安全保障指南。
2025-07-03 23:41:59
551
原创 从零开始:构建具有幻觉缓解能力的AI原生应用
2023年,一位律师在准备法律文件时,依赖了GPT-4生成的案例引用。令他震惊的是,法庭后来发现这些案例完全是虚构的——AI编造了看似真实的案例名称、法官姓名和判决结果。这一事件不仅导致案件处理延误,还引发了法律界对AI可靠性的广泛担忧。这个案例并非孤例。在医疗领域,有研究显示AI系统在诊断罕见疾病时,会自信地编造不存在的治疗方法;在金融分析中,AI曾虚构市场数据导致错误的投资决策;在教育场景中,学生依赖AI生成的内容完成作业,却不知其中包含多处事实错误。AI幻觉已从技术问题升级为信任危机。
2025-07-03 23:27:55
495
原创 数学建模对数学思维的拓展作用
抽象思维:从具体对象中提取数学本质的能力逻辑推理:遵循严格规则进行演绎和归纳的过程符号操作:运用数学符号系统进行表达和运算算法思维:设计和执行解决特定问题步骤的能力问题情境化:在模糊、复杂的现实情境中识别数学要素多模型表征:在不同数学表示形式间灵活转换的能力不确定性处理:量化和管理现实问题中的模糊性和随机性系统动态思维:理解变量间相互作用及随时间演化的能力模型评估与改进:基于证据迭代优化模型的元认知能力。
2025-07-03 23:12:13
567
原创 探索AI原生应用领域幻觉缓解的新途径
在AI原生应用迅猛发展的今天,"幻觉"问题已成为构建可信赖AI系统的最大障碍之一。本文深入探讨了AI幻觉的本质、成因及危害,系统梳理了当前幻觉缓解技术的最新进展。通过"知识拼图"这一创新比喻,我们将复杂的AI幻觉问题简化为可理解的概念框架,并详细阐述了多层次幻觉缓解策略。文章提供了实用的技术实现方案,包括基于检索增强生成(RAG)的事实核查机制、多源信息交叉验证系统以及基于知识图谱的推理增强方法。通过电商智能客服、医疗诊断辅助和金融风险评估三个真实案例,展示了幻觉缓解技术在不同领域的应用效果。
2025-07-03 22:56:07
394
原创 AI工程师必备:AI原生应用开发的系统思维框架
在生成式AI爆发的时代,AI应用开发正经历从"AI作为附加功能"到"AI作为核心引擎"的范式转变。本文提出了一套完整的"AI原生应用开发系统思维框架",旨在帮助AI工程师超越工具使用层面,建立系统化、结构化的思维模式。通过解构AI原生应用的本质特征,我们将探索价值驱动设计、认知架构设计、数据-模型共生体系、工程化治理和动态进化机制五大核心维度,辅以真实案例和代码实现,展示如何构建真正以AI为核心的创新应用。
2025-07-03 22:38:04
444
原创 AI算力调度在金融风控系统中的实践
金融风控系统正经历从传统规则引擎向人工智能驱动的范式转变,这一变革对计算资源提出了前所未有的需求。本分析深入探讨AI算力调度在金融风控场景中的核心挑战与创新解决方案,构建了从理论基础到工程实现的完整知识体系。通过第一性原理分析,我们揭示了金融风控特有的算力需求模式——包括极端峰值与常态负载的巨大差异、严格的低延迟约束、以及监管合规带来的特殊要求。文章系统阐述了动态资源分配算法、优先级调度机制和异构计算架构在风控场景的适应性改造,提供了生产级别的实现框架和代码示例。
2025-07-03 22:22:16
374
原创 畅享数学领域数理科学的思维盛宴
数学思维是人类心智最伟大的成就之一,它不仅是科学和技术的基础,也是理解宇宙规律和人类自身的钥匙。从古希腊的几何学,到牛顿的微积分,到爱因斯坦的相对论,再到现代的量子力学和弦理论,数学思维不断深化我们对自然的理解。数学思维的本质在于其抽象能力、逻辑严谨性和模式识别能力。它使我们能够超越具体经验,把握事物的本质和规律;能够从纷繁复杂的现象中发现秩序和结构;能够通过严格推理构建知识体系;能够通过创造性思维拓展认知边界。在人工智能时代,数学思维的价值不仅没有降低,反而更加凸显。
2025-07-03 22:11:15
482
原创 AI原生应用开发实战:构建跨语言理解聊天机器人
在全球化与数字化深度融合的今天,语言障碍仍然是连接全球用户的主要挑战之一。本文将带您踏上构建"AI原生"跨语言聊天机器人的实战之旅,这不仅是一个翻译工具,更是一个能够理解文化背景、保持上下文连贯、支持多语言实时对话的智能系统。我们将从基础概念出发,逐步深入技术原理,通过具体代码示例和架构设计,展示如何从零开始构建这一系统。无论您是希望拓展国际业务的开发者,还是对AI多语言处理感兴趣的技术爱好者,本文都将为您提供从理论到实践的完整指南,帮助您打造真正打破语言壁垒的智能交互体验。
2025-07-03 04:05:30
572
原创 AI原生应用领域增量学习的安全保障措施
在AI原生应用蓬勃发展的今天,增量学习技术使AI系统能够像人类一样持续学习新知识,而不必每次都从零开始。然而,这种持续进化的能力也带来了独特的安全挑战。本文深入探讨了AI原生应用中增量学习面临的安全风险,系统阐述了保障增量学习安全的关键技术与策略。从数据验证到模型防护,从隐私保护到系统监控,我们将一步步解析如何构建一个既能持续学习又能抵御各种威胁的AI安全体系。通过生动的类比、实用的代码示例和真实案例分析,本文为AI工程师、安全专家和技术决策者提供了全面的增量学习安全保障指南。
2025-07-03 03:51:48
671
原创 从零开始:构建具有幻觉缓解能力的AI原生应用
2023年,一位律师在准备法律文件时,依赖了GPT-4生成的案例引用。令他震惊的是,法庭后来发现这些案例完全是虚构的——AI编造了看似真实的案例名称、法官姓名和判决结果。这一事件不仅导致案件处理延误,还引发了法律界对AI可靠性的广泛担忧。这个案例并非孤例。在医疗领域,有研究显示AI系统在诊断罕见疾病时,会自信地编造不存在的治疗方法;在金融分析中,AI曾虚构市场数据导致错误的投资决策;在教育场景中,学生依赖AI生成的内容完成作业,却不知其中包含多处事实错误。AI幻觉已从技术问题升级为信任危机。
2025-07-03 03:50:49
646
原创 数学建模对数学思维的拓展作用
抽象思维:从具体对象中提取数学本质的能力逻辑推理:遵循严格规则进行演绎和归纳的过程符号操作:运用数学符号系统进行表达和运算算法思维:设计和执行解决特定问题步骤的能力问题情境化:在模糊、复杂的现实情境中识别数学要素多模型表征:在不同数学表示形式间灵活转换的能力不确定性处理:量化和管理现实问题中的模糊性和随机性系统动态思维:理解变量间相互作用及随时间演化的能力模型评估与改进:基于证据迭代优化模型的元认知能力。
2025-07-03 03:50:03
717
原创 探索AI原生应用领域幻觉缓解的新途径
在AI原生应用迅猛发展的今天,"幻觉"问题已成为构建可信赖AI系统的最大障碍之一。本文深入探讨了AI幻觉的本质、成因及危害,系统梳理了当前幻觉缓解技术的最新进展。通过"知识拼图"这一创新比喻,我们将复杂的AI幻觉问题简化为可理解的概念框架,并详细阐述了多层次幻觉缓解策略。文章提供了实用的技术实现方案,包括基于检索增强生成(RAG)的事实核查机制、多源信息交叉验证系统以及基于知识图谱的推理增强方法。通过电商智能客服、医疗诊断辅助和金融风险评估三个真实案例,展示了幻觉缓解技术在不同领域的应用效果。
2025-07-03 03:49:11
464
原创 AI工程师必备:AI原生应用开发的系统思维框架
在生成式AI爆发的时代,AI应用开发正经历从"AI作为附加功能"到"AI作为核心引擎"的范式转变。本文提出了一套完整的"AI原生应用开发系统思维框架",旨在帮助AI工程师超越工具使用层面,建立系统化、结构化的思维模式。通过解构AI原生应用的本质特征,我们将探索价值驱动设计、认知架构设计、数据-模型共生体系、工程化治理和动态进化机制五大核心维度,辅以真实案例和代码实现,展示如何构建真正以AI为核心的创新应用。
2025-07-03 03:48:17
417
《Kotlin项目实战开发》第3章+类型系统与可空类型
2017-09-30
ClickHouse 高性能、可扩展和低成本的OLAP数据库 陈光剑 20230912
2023-09-14
Will AI Fix Work? 工作节奏超过了我们的跟上能力 人工智能有望创造一种全新的工作方式
2023-05-17
THE AI INDEX REPORT 人工智能指数报告 Measuring trends in Artificial Inte
2023-04-06
An introduction to functional programming through lambda calculus.PDF.zip
2019-09-22
Principles of programming languages by Gilles Dowek (auth.) (z-lib.org).pdf
2021-04-28
Kotlin Coroutines by Tutorials (1st Edition)
2021-04-28
A Brief History of Artificial Intelligence
2021-04-28
2024 年可以实现 AGI 吗?
2024-01-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人