- 博客(126000)
- 资源 (15)
- 收藏
- 关注
原创 【光子 AI 】整理 AI 人工智能发展历史上里程碑事件的关键论文清单和下载地址
本文整理了人工智能发展史上15篇具有里程碑意义的关键论文,涵盖1943年至2020年间的重要突破。清单按时间顺序排列,每篇论文包含:发表年份、标题、主要作者、历史意义说明以及可直接下载的PDF链接。这些论文代表了AI发展的关键节点,从早期的神经网络理论奠基(McCulloch&Pitts,1943)、感知机模型(Rosenblatt,1958)、反向传播算法(Rumelhart等,1986),到深度学习的复兴(Hinton等,2006)、AlexNet突破(2012),以及近年来的Transform
2025-12-18 13:05:02
573
原创 【光子 AI 】《Python 编程极简教程》 面向零基础到初级读者的实用入门手册
《Python编程极简教程》摘要(140字) 本教程为零基础学习者提供Python快速入门指南。首先介绍Python作为简单通用的解释型语言,适合数据分析、AI、Web开发等领域。详细讲解开发环境搭建(Windows/macOS)、基础语法(变量/数据类型/流程控制)、函数使用及模块导入。通过"Hello World"示例引导读者编写首个程序,并提供计算器、文本统计等实战案例。强调实践导向,建议学习者多写代码解决问题,最后给出面向对象编程、标准库等进阶方向。全篇突出Python易学实用的
2025-12-18 12:53:04
160
原创 【光子 AI 】AI 大模型 Transformer 架构的完整训练计算过程:一个可交互的可视化动画演示
本文介绍了一个Transformer架构训练过程的可视化动画演示系统。该系统采用交互式设计,通过17个步骤完整展示大模型训练流程,包括输入处理、注意力机制、前馈网络、损失计算和参数更新等关键环节。可视化界面包含主视图区、矩阵面板和控制面板,使用不同颜色编码区分功能模块(如蓝色表示输入数据、绿色表示注意力机制)。系统提供播放控制、单步执行和速度调节功能,支持开发者直观理解Transformer模型的训练动态。HTML源代码展示了响应式UI设计,采用现代CSS技术实现美观的渐变效果和交互元素。
2025-12-18 03:25:13
50
原创 【光子 AI 】LangGraph 底层图计算算法原理详解:Pregel 图计算算法动画演示
Pregel 图计算算法动画演示:最短路径算法 摘要:本文展示了一个基于网页的Pregel图计算算法动画演示,专注于最短路径算法的可视化实现。该演示采用SVG技术构建交互式图形界面,通过动画效果直观展示Pregel计算模型的核心概念,包括顶点状态变化(活跃/非活跃)、消息传递机制和超步同步屏障。界面设计采用深色背景与渐变色彩,突出算法运行时的动态效果,如顶点状态高亮、消息传递路径以及同步屏障脉冲动画。技术实现上结合了HTML5、CSS3动画和JavaScript,为学习者提供理解Pregel分布式图计算模型
2025-12-18 02:28:37
28
原创 【光子 AI 】LangGraph 计算图原理:向小学生讲清楚 Pregel 图计算算法原理与本质,并给出极简源代码实现【分别给出 Java、Rust、Go 和 Python 语言版本】
Pregel图计算算法通过"传声筒游戏"生动解释了其原理:将计算任务分解为多个点(顶点)之间的消息传递,每个顶点独立处理收到的信息并更新状态,通过多轮迭代最终达成全局目标。文章提供了极简实现代码(Python、Java、Rust、Go),以寻找图中最大值为例,展示了顶点如何接收消息、比较数值并传播结果的过程。这种分布式计算模型特别适合处理大规模图数据,每个顶点只需关注局部信息即可协同完成全局计算。
2025-12-18 01:30:46
19
原创 【光子 AI 】LangGraph:Graph = 有向有环图 + 状态机实现原理详解:数据结构模型与核心算法代码实现逻辑解析
LangGraph核心原理解析:基于Pregel模型的消息传递图,结合有向有环图和状态机特性。关键实现包括:1) 共享状态机制(TypedDict/Pydantic模型)配合Reducer逻辑实现状态更新;2) 图拓扑结构通过邻接表维护节点和条件边;3) 检查点机制支持状态持久化和恢复。运行时采用Pregel循环算法,通过超级步迭代执行节点函数、应用状态归约、条件路由下一批节点,同时支持人工中断和异步并行处理。该架构使LangGraph具备循环执行、条件跳转等DAG无法实现的动态流程控制能力。
2025-12-17 02:51:36
706
5
原创 在 MultiAgent 系统中,多个 Agent 之间是怎样协作通信和共享上下文的?给出详细的实现原理和框架案例深度解析(例如 LangChain)
多Agent系统中的协作通信与上下文共享机制解析 摘要: 多Agent系统的协作通信主要通过三种架构模式实现:1)集中式协调(Orchestrator模式),2)点对点消息传递,3)黑板/共享内存机制。上下文共享则采用消息链式传递、结构化共享状态对象或外部记忆存储三种方式。以LangGraph为例,它采用有状态图(StateGraph)模型,每个Agent作为节点对共享状态进行读写,通过节点连接定义协作路径,实现高效上下文共享。典型实现包含定义State类型、构建Agent节点、设置条件边等步骤,兼顾灵活性
2025-12-10 23:42:07
701
1
原创 【Java 面试宝典】30 道 AI 大模型与Agent 算法工程研发与后端工程开发技术面试题宝典(精选面试题和面试必过的答案完整详细解析)
考察点:生成范式、模型家族。自回归 LM:建模 p(x₁,…,x_T) = ∏ p(x_t | x_<t)逐 token 预测下一个词,典型如 GPT。Encoder 将源序列编码成隐表示Decoder 条件生成目标序列:p(y | x)区别:自回归 LM:单序列建模,适合续写、对话、补全。Seq2Seq:明确「输入→输出」映射,适合翻译、摘要等有「源-目标」对。现代很多任务通过「指令 + 上下文」把任务转成纯自回归生成,不再需要显式 Encoder。考察点。
2025-12-10 16:38:03
902
5
原创 【Java 面试宝典】30 道 Java 面试题宝典(精选面试题和面试必过的答案完整详细解析)
下面给你一份「30 道 Java 面试题宝典」,偏向通用 Java 开发/后端岗位,题目覆盖:每题包含:你可以当作“背诵提纲”来用,真正面试时再展开举例即可。考察点:基本功、OOP 理解。必会:加分:考察点:OO 设计、Java 特性。必会:抽象类()接口(,Java 8+)使用场景:加分:考察点:参数传递机制,常见坑。必会:加分:考察点:对象比较、集合 key、基础扎实度。必会:重写 时:加分:考察点:字符串、性能、线程安全。必会:加分:考察点:异常体系、编码习惯。必会:加分:考察点:集合底层、时间复杂
2025-12-10 16:37:34
836
1
原创 【深度解析】AI Agent 上下文工程(Context Engineering)的核心价值!在电商客服场景中,如何构建有效的上下文窗口(如用户历史订单、咨询记录)以提升 Agent的回答质量?
深度解析上下文工程在电商客服中的应用 本文探讨了上下文工程在优化电商客服Agent回答质量中的关键作用。随着大模型窗口扩展,上下文对齐成为落地瓶颈。文章提出一套系统方法论: 核心问题:客服Agent因上下文缺失导致回答不准确,表现为重复追问、答非所问等,严重影响效率和用户体验。 解决方案: 四阶九步构建法:从上下文建模到投放,涵盖实体设计、多路召回、动态排序和记忆压缩。 开源框架Context4CS:集成Python、Milvus等技术,支持多租户和多模态数据。 关键价值:提升上下文召回率、信噪比和利用率,
2025-11-08 04:11:51
571
1
原创 Multi-agent 的优势是什么,对 Agent 的深度理解:对比集中式与分布式 Multi-Agent 架构的优缺点
2025年Multi-Agent技术已突破单体Agent的局限,实现从「单体大脑」到「群体智能」的范式跃迁。本文深入拆解Agent的原子属性与六层架构,揭示单Agent面临的幻觉墙、工具墙和时间墙等能力边界,以及泛化/精准、自主/可控、成本/性能三重悖论。通过Multi-Agent的社会模拟机制,利用任务解构、并行压缩、角色异构等七大优势,显著提升复杂任务处理能力。案例展示48小时内构建迷你ERP系统的实践,同时指出通信开销、安全攻击等未来挑战。Multi-Agent通过分布式协作实现超线性加速,正成为AI
2025-11-08 03:03:28
175
原创 万字详解:程序员在研发项目需求中与协作方高质量沟通指南——沟通,是程序员最值得投资的软技能
本文系统性地介绍了程序员如何在研发项目中与协作方进行高质量沟通。文章首先强调沟通是程序员职业成长的关键技能,提出从"代码实现者"到"问题解决者"的心态转变。然后从五个核心原则展开:转变角色定位、换位思考、主动沟通、聚焦共同目标和追求共识。 在方法论部分,文章详细拆解了需求沟通的四个阶段: 需求启动与澄清阶段:强调会前准备、高效提问和会后跟进; 需求分析与拆解阶段:包括MVP思维、边缘案例识别和用户故事定义; 技术方案设计与评审阶段:涵盖技术翻译、风险评估和多方案提供;
2025-11-06 01:06:30
1516
3
原创 万字长文:深入解析“上下文工程”(Context Engineering)——驾驭百万Token时代的AI性能缰绳:五种典型的“上下文失效”模式与解决方案
信息过载:上下文超出模型的“有效处理容量”,关键信息被冗余、错误内容掩盖;注意力稀释:模型的注意力资源无法在长上下文中均匀分配,导致关键信息被忽略;一致性缺失:模型缺乏对上下文信息的“校验、冲突处理”机制,无法保证输入的有效性与逻辑性。Context Engineering不是“对抗”大模型的上下文,而是“驾驭”它。在大模型的上下文窗口持续扩容的今天,单纯追求“更长的窗口”已无法解决实际问题——真正的竞争力,在于如何让大模型在海量信息中精准定位核心、规避风险、高效输出。
2025-10-25 12:58:12
2919
原创 万字详解:36岁中国程序员未来三十年人生规划2025-2055
中国程序员36岁后的30年人生规划 36岁的中国程序员正处于职业与人生的关键转折点。面对技术迭代、AI崛起和行业变革,未来30年规划应分三阶段推进: 36-40岁(转型期):选择技术深耕或管理转型,聚焦AI、云计算等新兴领域,突破职业瓶颈,提升软技能。 41-50岁(黄金期):发展多元化职业路径,打造个人品牌,建立副业与投资组合,应对职业风险。 51-65岁(价值期):转向咨询、教育等柔性工作,参与公益活动,实现经验传承与人生价值。规划需兼顾技术敏感度、财务稳健和生活平衡,在快速变化的行业中保持持续竞争力与
2025-07-07 01:23:20
5852
14
原创 《Agentic AI 实战》第7章 DeepResearcher:基于MCP和browser-use实现深度研究Agent
DeepResearcher:基于MCP与浏览器自动化的深度研究Agent DeepResearcher是一个结合MCP(Model Context Protocol)和browser-use技术的智能研究Agent系统,实现了网络搜索、学术论文分析、网页内容提取与结构化报告生成的全流程自动化。系统采用分布式微服务架构,包含研究服务器、客户端服务器、LangGraph工作流和Streamlit前端等核心组件。 技术亮点包括: 通过MCP协议标准化连接LLM与外部工具 使用browser-use技术进行深度网
2025-06-23 23:10:15
1221
原创 程序员职业生涯系列:关于技术能力的思考与总结
引子儒、释(佛)、道三家思想:释(佛家):处理好人与心的关系,我们要战胜自己;儒(儒家):处理好人与人的关系,我们要团结好他人;道(道家):处理好人与自然的关系,我们应该顺势而为。明人陆绍珩《醉古堂剑扫》自叙有云:一愿识尽人间好人,二愿读尽世间好书,三愿看尽世间好山水。或曰:静则安能,但身到处,莫放过耳。旨哉言乎!余性懒,逢世一切炎热争逐之场,了不关情。惟是高山流水,任意所如,遇翠丛紫莽,竹林芳径......
2022-08-29 10:00:40
135513
241
原创 【光子AI】MCP 跟 Function Calling 的本质区别全解析
维度MCP架构层级应用内能力系统级协议工具发现❌✅远程调用❌✅多工具生态❌✅多 Agent❌✅可扩展性低极高适合场景ChatbotAgent OS / 平台Function Calling = 函数调用机制MCP = AI 与现实世界交互的基础设施AI Agent 平台企业级 AI OS多 Agent 协作系统插件 / 工具市场👉MCP 是底座👉Function Calling 只是 MCP 里的一个实现细节。
2025-12-22 03:40:21
2
原创 如何设计一个eBPF数据库
在当今数据驱动的世界中,实时数据处理和分析的需求日益增长。传统数据库架构在面对高性能、低延迟和高吞吐量的要求时常常遇到瓶颈。eBPF(Extended Berkeley Packet Filter)技术的出现为解决这些挑战提供了新的可能性。本文将深入探讨如何设计和实现一个基于eBPF的创新数据库系统,这种数据库能够直接在内核空间运行,提供前所未有的性能和实时分析能力。
2025-12-21 22:49:53
372
原创 AI应用架构师深度剖析智能产品定价AI平台的架构设计
本文将从AI应用架构师的视角,深度拆解智能产品定价AI平台的架构设计逻辑为什么要做“分层架构”?各层的核心职责是什么?数据层如何解决“数据孤岛”和“实时性”问题?特征工程层为什么是“定价 accuracy 的地基”?模型层如何平衡“复杂度”与“解释性”?决策引擎层如何连接“模型输出”与“业务规则”?如何通过“监控与反馈”让系统持续进化?我们会结合电商、SaaS、零售三大典型场景,用技术选型、数学模型、代码示例还原架构落地的全流程。本文将从AI应用架构师。
2025-12-21 18:59:45
584
原创 AI应用架构师的新媒体营销技术成熟度模型
在新媒体营销领域,AI应用架构师技术-业务断层:营销部门需要"快速出效果",而AI架构需要"长期可扩展",两者节奏难以调和技术栈碎片化:从Google Analytics到Adobe Experience Cloud,从ChatGPT API到企业私域模型,工具链缺乏统一标准评估体系缺失:现有成熟度模型(如CMMI、DMM)多聚焦软件开发或数据管理,没有针对AI+新媒体营销的专用框架角色定位模糊:AI应用架构师夹在数据科学家、营销技术专家、业务部门之间,职责边界不清,能力要求多元技术成熟度模型。
2025-12-21 15:45:26
630
原创 在做技术决策时,你是如何说服团队成员的?
技术决策的本质是**“在有限信息下,为实现业务目标而进行的资源与风险权衡”**。不确定性:技术选型的长期效果(如性能、可维护性)难以100%预测,且受团队能力、业务变化等多因素影响;多目标冲突:同一决策可能涉及“短期效率vs长期成本”“开发速度vs系统稳定性”“技术创新vs团队熟悉度”等多重矛盾;群体参与性:现代技术团队强调协作,任何决策都需要开发、测试、运维、产品等多角色共识,而非“技术负责人一言堂”。
2025-12-21 08:05:03
487
原创 CPU+GPU+FPGA异构计算AI系统调优:架构师的协同计算资源调度策略
资源异构性挑战:三类处理器具有截然不同的架构特性(控制逻辑vs数据并行vs定制加速),导致统一调度难度大。CPU擅长复杂控制流和串行任务,GPU优化了大规模并行数据处理,FPGA提供定制化硬件加速,但三者的编程模型、内存模型和通信机制各不相同。工作负载多样性:AI工作负载涵盖数据预处理、模型训练、推理部署等多个阶段,每个阶段又包含多种操作类型(卷积、循环、注意力机制等)。以Transformer模型为例,包含多头注意力(内存密集型)、前馈网络(计算密集型)和层归一化(轻量级但需要低延迟)等不同类型操作。
2025-12-21 00:19:37
404
原创 智能决策系统日志系统设计:AI架构师的调试与分析技巧
本文深入探讨智能决策系统中日志系统的设计原理与实践技巧。作为AI架构师,我们面临的核心挑战是如何在复杂的决策流水线中建立有效的可观测性机制。文章从第一性原理出发,系统分析智能决策系统的独特日志需求,提出分层日志架构设计,并详细介绍基于AI特性的调试与分析技术。通过理论框架、实践案例和代码实现的结合,为构建生产级智能决策系统提供全面的日志设计指导。关键词:智能决策系统、日志架构、AI调试、可观测性、分布式追踪、机器学习运维智能决策系统的日志系统远不止传统意义上的记录工具,而是决策智能的可观测性基础设施。在AI
2025-12-20 20:29:30
693
原创 揭秘!全球顶尖芯片公司的AI自动化设计方案
本文将以“技术解密+实战案例”的方式,全面剖析全球顶尖芯片公司的AI自动化设计方案。我们将深入芯片设计的核心环节(架构定义、逻辑综合、布局布线、物理验证、良率优化),拆解台积电、英伟达、AMD、谷歌等公司如何利用AI技术突破传统限制,并通过数学模型、算法流程图、对比分析等形式,还原其技术路线的底层逻辑。传统芯片设计流程的痛点与AI介入的必然性:从EDA工具链的历史局限性出发,分析AI在各环节的应用场景;AI驱动的芯片设计核心技术拆解。
2025-12-20 16:39:33
350
原创 从单体到智能自治:AI应用架构师详解自动化与智能化融合的演进路径(附架构图)
我们团队80%的时间都在处理重复的运维、监控和故障排查,而不是在创造新的业务价值。这句话是否道出了你所在技术团队的现状?在数字化转型的深水区,传统的应用架构在支撑业务快速迭代和应对市场不确定性方面,正显得越来越力不从心。应用架构的终极目标,正从实现功能自动化,转向追求系统级的智能自治。本文将以一名AI应用架构师的视角,带你穿越这段波澜壮阔的演进历程。我们将从稳固但笨重的单体架构出发,途经强调解耦与效率的微服务架构,探索引入AI能力初心的AI赋能架构,最终抵达以智能体为核心的智能自治架构。
2025-12-20 12:49:26
735
原创 Serverless AI性能调优:架构师在AWS Lambda_Azure Functions中的优化方案
分层优化:从架构到底层代码的全面优化监控驱动:基于数据的持续优化安全优先:在性能优化的同时确保安全性成本意识:平衡性能提升与成本控制。
2025-12-20 10:05:24
484
原创 法律AI商业化:如何设计可持续的商业模式?
法律AI是指将人工智能技术(NLP、机器学习、知识图谱等)应用于法律场景,辅助或替代人工完成法律任务的系统。类别定义典型产品效率工具类提升法律工作效率(如检索、审查、文书生成)合同审查工具(LawGeex)、案例检索引擎(Westlaw Edge)决策辅助类提供法律判断支持(如判例预测、风险评估)案件结果预测系统(Ravel Law)、合规风险监控平台(OneTrust)服务重构类创造新型法律服务形态(如自动化法律流程、智能合约)
2025-12-20 01:54:33
597
原创 从0到1,AI应用架构师搭建AI模型安全防护方案
在这个AI驱动的时代,AI模型就像企业的"数字大脑",支撑着从智能推荐、风险控制到自动驾驶、医疗诊断等关键业务。但就像现实世界中的大脑会生病一样,AI模型也面临着各种"疾病"——被攻击、被窃取、泄露隐私数据…这些安全问题不仅会导致业务失效,更可能造成巨大的经济损失和声誉风险。本文目的:帮助AI应用架构师系统掌握AI模型安全防护的知识体系和实践方法,能够从零开始设计并实施一套完整的AI模型安全防护方案,将安全理念融入AI系统的全生命周期。覆盖范围AI模型全生命周期的安全威胁(从数据采集到模型部署运维)
2025-12-19 22:39:54
717
原创 智能数字资产登记系统数据存储架构:AI应用架构师的选型指南
想象你是一位超级图书馆馆长,需要设计一个存放"数字宝藏"的仓库——这些宝藏可能是电子艺术品、版权证书、数字货币、智能合约等。你的任务不仅是安全地保管这些宝藏,还要让需要的人能快速找到它们,同时防止坏人偷走或篡改。这就是智能数字资产登记系统的核心任务,而数据存储架构就像是这个仓库的"建筑设计图"。本文的目的是帮助AI应用架构师这个"总设计师",理解不同"仓库类型"(存储技术)的特点,掌握如何根据"宝藏特性"(数字资产类型)和"访问需求"(业务场景),选择最合适的"建筑材料"和"结构设计"。
2025-12-19 18:49:43
527
原创 《全面布局!AI应用架构师的AI系统集成最佳实践新路径规划》
什么是AI系统集成?AI系统集成,绝非简单地将一个训练好的AI模型API嵌入到现有应用中那么简单。它是一个复杂的、系统性的工程实践,旨在将人工智能技术(包括但不限于机器学习模型、深度学习框架、自然语言处理、计算机视觉等)与企业现有的信息系统、业务流程、数据资产以及组织结构有机地融合起来,以实现特定的业务目标,提升运营效率,创造新的商业模式或优化客户体验。它涉及到数据的采集与治理、模型的部署与管理、应用的开发与集成、流程的重构与优化、以及组织能力的适配与提升等多个层面。
2025-12-19 15:34:47
621
原创 用React+ECharts搭建数据分析自动化工具链,AI应用架构师分享
在数据驱动决策日益成为企业核心竞争力的今天,构建高效、灵活且强大的数据分析工具链已成为技术团队的关键任务。本文作为AI应用架构师的深度实践分享,全面剖析了如何利用React与ECharts这一黄金组合,构建端到端的数据分析自动化工具链。从基础概念解析到复杂系统架构设计,从核心组件实现到AI增强功能集成,本文提供了一套系统化的方法论和实践指南。我们将深入探讨数据处理流水线的构建、交互式可视化的实现、性能优化策略、AI驱动的智能分析功能,以及企业级部署的最佳实践。
2025-12-19 12:51:22
827
原创 【光子AI:创业计划书-模板案例参考 2 】光子AI 科技有限公司
光子AI科技有限公司致力于为中小企业提供AI员工团队服务,其战略规划分为三个阶段:垂直场景专家(0-18个月)、企业智能中台(18-36个月)和全球智能操作系统(36-60个月)。公司瞄准全球3.33亿家中小企业,聚焦销售、客服、HR等高频场景,采用差异化技术路线(记忆增强型Agents、Multi-Agent编排引擎)和商业模式(按效果付费+生态分成)。核心产品包括销售、客服和HR三大智能体,通过分层架构实现从基础设施到应用层的完整AI解决方案。公司计划在2028年前服务100万家企业,成为企业智能化操作
2025-12-19 10:30:11
52
原创 设计模式:观察者模式的应用场景。
在当今快速变化的软件世界中,构建能够及时响应状态变化的系统变得越来越重要。观察者模式作为一种经典的行为型设计模式,为对象间的交互提供了优雅的解决方案,它定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象,当主题对象发生变化时,它的所有观察者都会收到通知并自动更新。本文将深入探讨观察者模式的理论基础、实现方式和应用场景,从基础概念到高级应用,从代码实现到架构设计,全面解析这一模式如何帮助开发者构建灵活、可扩展、松耦合的软件系统。
2025-12-19 09:02:52
566
原创 【光子AI:创业计划书-模板案例参考 1 】光子AI 科技有限公司
光子AI科技有限公司是一家专注于为中小企业提供AI员工团队的创业企业。公司使命是让中小企业以低成本获得智能化能力,愿景是成为全球中小企业的AI智能运营基础设施。核心战略分为三个阶段:先以销售Agent单点突破,再扩展到多Agent协作,最终构建开放生态平台。目标客户主要为年营收500-5000万的电商/零售企业,通过AI Agent可显著提升销售、HR、财务、客服等场景效率5-20倍,降低人力成本50-75%。公司差异化在于专注中小企业需求,采用Agent原生技术架构,避免与SAP、Salesforce等巨
2025-12-19 03:33:30
44
原创 自然语言处理在法律领域的应用架构,引领法律科技潮流
本文系统阐述了自然语言处理(NLP)在法律领域应用的完整技术架构,从理论基础到实践部署的全生命周期视角,揭示了如何构建 robust、可解释且符合法律专业要求的智能系统。通过第一性原理分析,我们解构了法律文本的独特属性与NLP技术的适配性,提出了"法律语义理解金字塔"模型,构建了包含数据层、认知层、知识层和应用层的四维架构体系。文章深入探讨了法律实体识别、法律关系抽取、法律推理引擎等核心组件的实现机制,并通过实际案例展示了该架构在合同智能审查、司法案例检索、法律风险预测等场景的应用效果。
2025-12-19 01:19:29
509
原创 AI应用架构师如何让用户相信你的AI?这6个伦理设计细节比算法更重要
它不是“让用户成为算法专家”,而是“用用户能理解的语言解释决策逻辑”(如“您的贷款申请被拒绝,主要原因是‘收入不稳定’(权重40%)、‘征信记录不足’(权重35%)”)。:认知信任是基础(AI得“有用”),情感信任是核心(AI得“友好”),社会信任是底线(AI得“无害”)。深度学习等复杂模型(如Transformer、GBDT)因“黑箱特性”成为信任障碍——例如,当AI拒绝患者的治疗方案时,医生无法判断是“模型真的发现了风险”还是“数据噪声导致误判”,自然不敢采纳。——即“AI是否值得被信任”。
2025-12-18 21:30:58
1099
原创 设计内存文件系统
内存文件系统(In-Memory File System)是一种将文件系统的全部或部分数据结构和内容存储在计算机内存(RAM)中而非持久化存储设备(如硬盘、SSD)的文件系统实现。它提供了与传统磁盘文件系统相似的API和操作语义,但具有极高的读写性能和临时性的特点。
2025-12-18 18:20:03
911
原创 《干货新宝藏!AI应用架构师打造化学研究AI辅助决策系统干货新宝藏》
好的,各位读者朋友们!作为一名在软件架构和AI应用领域摸索多年的技术老兵,我始终对技术如何赋能传统行业抱有极大的热情。今天,我们将深入探讨一个极具挑战性又充满魅力的领域——为化学研究构建一个AI辅助决策系统。这不仅仅是一个简单的模型应用,而是一个完整的、面向复杂科学场景的应用架构实践。我们将从化学家的真实痛点出发,一步步拆解系统设计,涵盖数据、模型、架构、实现与部署的全链路。这篇文章可以看作是一篇详细的架构设计文档,希望能为有志于踏入“AI for Science”这一广阔天地的架构师和工程师们提供一份扎实
2025-12-18 14:31:34
519
《Kotlin项目实战开发》第3章+类型系统与可空类型
2017-09-30
ClickHouse 高性能、可扩展和低成本的OLAP数据库 陈光剑 20230912
2023-09-14
Will AI Fix Work? 工作节奏超过了我们的跟上能力 人工智能有望创造一种全新的工作方式
2023-05-17
THE AI INDEX REPORT 人工智能指数报告 Measuring trends in Artificial Inte
2023-04-06
An introduction to functional programming through lambda calculus.PDF.zip
2019-09-22
Principles of programming languages by Gilles Dowek (auth.) (z-lib.org).pdf
2021-04-28
Kotlin Coroutines by Tutorials (1st Edition)
2021-04-28
A Brief History of Artificial Intelligence
2021-04-28
2024 年可以实现 AGI 吗?
2024-01-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅