基本介绍
为了克服图像噪声对图像分割结果的影响,利用图像中与像素具有相似邻域结构的像素提取当前像素的非局部空间信息,构造了基于像素的灰度信息和非局部空间灰度信息的二维直方图,并将此二维直方图引入到Otsu曲线阈值分割法中,提出了基于灰度和非局部空间灰度特征的二维Otsu曲线阈值分割法。最小时即为分割的最佳阈值(minimizes the weight within class variance. ) 这个就意味着当取阀值为t时,前景和背景的方差加权和最小,即前景和背景每部分的像素都比较平稳。
参考代码
function th=thresh_md(a);
x=imread(a);
a=rgb2gray(x);
subplot(211);
imshow(a,[]);
[m,n]=size(a);
N=m*n;
L=256;
for i=1:L
count(i)=length(find(a==(i-1)));
f(i)=count(i)/(N);
end
for i=1:L
if count(i)~=0
st=i-1;
break;
end
end
for i=L:-1:1
if count(i)~=0
nd=i-1;

本文介绍了如何使用Otsu的全局阈值处理技术进行图像分割,特别是通过结合像素的灰度信息和非局部空间灰度信息来构建二维直方图,以增强分割效果。在MatLab中,这种二维Otsu方法可以找到使前景和背景内部方差加权和最小的最佳阈值,从而得到更稳定的图像分割结果。
订阅专栏 解锁全文
601

被折叠的 条评论
为什么被折叠?



