路径规划是导航系统的基本能力之一。
熟悉这个模块的目标:
1. 熟悉导航常用的路径规划经典算法,这个在导航系统开发比较成熟后,使用哪种算法并不是最重要的,关键是能满足性能需求
2. 熟悉有哪些路径规划的衡量指标,是最近,最省时间,最省油... 度量指标要根据实际需求来开发,哪些指标最常用?
3. 与地图数据的关系,分层思想
4. 使用者对路径规划的偏好,机器学习能力
导航引擎在得到目的地与自身位置信息后,就需要根据地图,计算出最优的路径。
输入:目的地、当前位置
输出:最优路径,或多条备选路径
路径规划的算法有哪些?
路径规划有很多算法,在导航中,经常提到的就是A*和Dijkstra算法。
A*算法是导航路径计算中的标准算法。它比Dijkstra算法多了一个估算函数,若估算函数为0,A*算法也就退化为Dijkstra算法。
但在一般的嵌入式硬件上,基于性能和内存的限制与要求,不能直接使用A*算法计算路径。所以,也有很多改进的方法。
例如:
1. 应用地图数据分层的思想,简化地图中道路的网络结构,也能提高路径规划的性能。
2. 起始点与目的地的方向考虑进去,扩展时,有方向性进行扩展,可以大大减少计算量和存储空间。
3. 保存曾经的规划记录,也能达到快速检索的能力。Google的地图规划好像就采用的这种思想。
路径规划的估计函数或考虑因素有哪些?
最短路径:只考虑时间,不考虑距离或其他因素
最快路径:只考虑距离,不考虑时间或其他因素
同时考虑时间和距离因素:50/50的路径规划方法。
路径规划算法仅仅是路径规划的一小部分,找到能满足需求的算法就可以了。
以下代码是我在做一个室内导航时,利用Dijkstra算法,做一个路径规划的试验。
当时

路径规划在导航系统中至关重要,涉及经典算法如A*和Dijkstra。A*算法因估算函数在资源受限环境下常被优化,如地图数据分层、方向性扩展和历史路径记录。路径规划考虑因素包括最短路径、最快路径或两者兼顾。本文以Dijkstra算法为例,展示室内导航路径规划试验,探讨满足不同需求的路径规划策略。
最低0.47元/天 解锁文章
2698

被折叠的 条评论
为什么被折叠?



