关闭

POJ-1664-放苹果-dp

204人阅读 评论(0) 收藏 举报
分类:

http://poj.org/problem?id=1664

Description

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。


设dp[i][j]表示 i个苹果放在j个盘子的方案,

当j>i 也就是 盘子数比苹果数多的时候,必然有j-i个盘子是空的,也就是dp[ i ][ j ]=dp[ i ][ i ] 

当j<=i 时,我们把dp[i][j]的情况分为两种,一是 有一个盘子不放苹果,二是全部盘子放满了

对于有一个盘子为空的方案数是 dp[i][j-1],对与全部放满的方案数是 dp[ i-j ] [ j ];

所以dp[i][j]=dp[i][j-1]+dp[i-j][j];


初始化是把 0个或1个苹果j个盘子的情况,1个盘子j个苹果的情况都设为1;

#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream>
#include <queue> 
#include <set>
#include <vector>
#include<stack>
using namespace std;     
#include <fstream>
const int N=205;
const int inf=2147483647;
int min(int a,int b)
{return a<b?a:b;}
int n,m; 
 int dp[20][20];
int main()
{
int t;
cin>>t;

while(t--)
{
	int i,j;
	memset(dp,0,sizeof(dp));
	scanf("%d%d",&m,&n);

 
		 
	for (i=0;i<=m;i++)
		dp[i][1]=1;
	for (i=1;i<=n;i++)
		dp[0][i]=dp[1][i]=1;

	for (i=2;i<=m;i++)
	{
		for (j=2;j<=n;j++)
		{
			if (j>i) 
				dp[i][j]=dp[i][i];
			else
			dp[i][j]=dp[i][j-1]+dp[i-j][j];
		}
	}
	printf("%d\n",dp[m][n]);
}


	return 0;

}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:216000次
    • 积分:8818
    • 等级:
    • 排名:第2267名
    • 原创:734篇
    • 转载:4篇
    • 译文:0篇
    • 评论:27条
    233
    文章分类
    最新评论