关闭

game 游戏 (斜率优化dp)

标签: 斜率优化dp
252人阅读 评论(0) 收藏 举报
分类:

game 游戏

10.16

思路:
f[i][j]表示前i个数分j段并全部获得的最小期望步数
f[i][j] = f[i-1][k] + cal(k+1, i) cal(k+1, i)表示k+1到i这一段分成一个部分并获得的最小期望步数
cal(k+1, i) = singma( (sum[x]-sum[k]) / t[x] ) ( k+1 <= x <= i )
= singma( sum[x] / t[x] ) - sum[k] * singma( 1.0 / t[x] ) ( k+1 <= x <= i )
sum[i] = singma(t[i])
rev[i] = singma(1.0 / t[i])
exc[i] = singma(sum[i] / t[i])
cal(k+1, i) = exc[i] - exc[k] - sum[k] * (rev[i] - rev[k])
f[a][j-1] + exc[i] - exc[a] - sum[a] * (rev[i] - rev[a])
< f[b][j-1] + exc[i] - exc[b] - sum[b] * (rev[i] - rev[b])
f[a][j-1] - f[b][j-1] + exc[b] - exc[a] + sum[a] * rev[a] - sum[b] * rev[b]
< sum[a] * rev[i] - sum[b] * rev[i]
f[a][j-1] - exc[a] + sum[a] * rev[a] - f[b][j-1] + exc[b] - sum[b] * rev[b]
< sum[a] * rev[i] - sum[b] * rev[i]
f[a][j-1] - exc[a] + sum[a] * rev[a] - f[b][j-1] + exc[b] - sum[b] * rev[b]) / (sum[a] - sum[b])
< rev[i]

#include <cstdio>
#include <iostream>
#include <algorithm>
#define N 200010
using namespace std;

int n, K;
int q[N], head, tail;
double exc[N], sum[N], rev[N];
double t[N];
double f[N][55];

inline double gety(int x, int p){
    return f[x][p] - exc[x] + sum[x] * rev[x];
}

inline double getk(int j, int k, int p){
    //return (gety(j, p) - gety(k, p)) / (sum[j] - sum[k]);
    return gety(j, p) - gety(k, p);
}

inline double cal(int k, int i){
    return exc[i] - exc[k] - sum[k] * (rev[i] - rev[k]);
}

inline void add(int i, int k){
    while(head < tail-1 && getk(i, q[tail-1], k) * (sum[q[tail-1]] - sum[q[tail-2]]) < getk(q[tail-1], q[tail-2], k) * (sum[i] - sum[q[tail-1]])) tail--;
    q[tail++] = i;
}

inline int getmax(int i, int k){
    while(head < tail-1 && getk(q[head+1], q[head], k) < rev[i] * (sum[q[head+1]] - sum[q[head]])) head++;
    return q[head];
}

int main(){
    freopen("game.in", "r", stdin);
    freopen("game.out", "w", stdout);
    scanf("%d%d", &n, &K);
    for(register int i=1; i<=n; ++i) scanf("%lf", &t[i]);
    for(register int i=1; i<=n; ++i){
        sum[i] = sum[i-1] + t[i];
        rev[i] = rev[i-1] + 1.0 / t[i];
        exc[i] = exc[i-1] + sum[i] / t[i];
        f[i][1] = exc[i];
    }
    for(int j=2; j<=K; ++j){
        head = tail = 0;
        q[tail++] = 0;
        for(register int i=1; i<=n; ++i) add(i, j-1);
        for(register int i=1; i<=n; ++i){
            if(i >= j){
                int k = getmax(i, j-1);
                f[i][j] = f[k][j-1] + cal(k, i);
            }
            else f[i][j] = 1e50;
        }
    }
    printf("%.2f\n", f[n][K]);
    return 0;
}
0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

[模板] 斜率优化Dp详解

算法简介今天xinyue讲了斜率优化,全程懵逼,居然还有这么牛逼的东西。 于是与achen讨论了一下,总结一些东西。 斜率优化Dp其实是单调队列的推广,单调队列、旋转卡壳、斜率优化都利用了单调性降...
  • Bill_Yang_2016
  • Bill_Yang_2016
  • 2017-01-22 19:29
  • 1169

斜率优化DP学习笔记

对于一类状态转移方程可以写成 f[i]=min/max(a[i]*b[j]+G[j])+H[i](a、H是只和i有关的函数,b、G是只和j有关的函数) 且a和b至少有一个是单调的动态规划问题,我们可以...
  • Tag_king
  • Tag_king
  • 2015-04-17 10:19
  • 1397

斜率优化总结&基础题表

斜率优化
  • u010336344
  • u010336344
  • 2016-09-28 21:42
  • 2006

hdu2829之二维斜率优化DP

T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in...
  • xingyeyongheng
  • xingyeyongheng
  • 2014-05-16 21:07
  • 1676

斜率优化DP学习笔记

斜率优化DP学习笔记
  • Goseqh
  • Goseqh
  • 2017-03-01 20:05
  • 287

斜率优化dp学习笔记

一年前就看斜率优化dp了…然而一直没有看懂。今天花了一天时间总算了解了个大概。这篇文章将大致分析斜率优化dp的原理和应用。
  • OIljt12138
  • OIljt12138
  • 2017-03-26 22:13
  • 172

DP斜率优化总结

DP斜率优化总结 寒假事情比较多,刚回来的一周都是聚会,外加自己不务正业了几天浪费了大半的时间,春节前后还是抽空学习了一下斜率优化DP。 理论基础见NOI2004年周源的论...
  • pi9nc
  • pi9nc
  • 2013-07-27 21:45
  • 7595

斜率优化dp 学习笔记

从一个问题开始 真正理解斜率优化dp orz ISA1 问题Apio 2010 特别行动队1.1 题意简述给出一个序列x1,x2...xnx_1,x_2...x_n,将其划分成若干个连续的区间,每...
  • Clove_unique
  • Clove_unique
  • 2017-02-18 23:39
  • 1035

斜率优化dp小结

单调队列优化在写斜率优化之前,我们来回顾一下单调队列优化的dp 1. 对于如下形式的dp方程 dp[i]=min{dp[j]+f(j)}(0<j<i)dp[i] = min\{dp[j] + f(...
  • lxc779760807
  • lxc779760807
  • 2016-05-10 21:02
  • 2411

【BZOJ2149】拆迁队,分治+斜率优化DP

.
  • xym_CSDN
  • xym_CSDN
  • 2017-03-10 15:14
  • 480
    个人资料
    • 访问:38353次
    • 积分:3335
    • 等级:
    • 排名:第11738名
    • 原创:310篇
    • 转载:1篇
    • 译文:0篇
    • 评论:2条
    文章分类