# game 游戏 （斜率优化dp）

252人阅读 评论(0)

### game 游戏

10.16

f[i][j]表示前i个数分j段并全部获得的最小期望步数
f[i][j] = f[i-1][k] + cal(k+1, i) cal(k+1, i)表示k+1到i这一段分成一个部分并获得的最小期望步数
cal(k+1, i) = singma( (sum[x]-sum[k]) / t[x] ) ( k+1 <= x <= i )
= singma( sum[x] / t[x] ) - sum[k] * singma( 1.0 / t[x] ) ( k+1 <= x <= i )
sum[i] = singma(t[i])
rev[i] = singma(1.0 / t[i])
exc[i] = singma(sum[i] / t[i])
cal(k+1, i) = exc[i] - exc[k] - sum[k] * (rev[i] - rev[k])
f[a][j-1] + exc[i] - exc[a] - sum[a] * (rev[i] - rev[a])
< f[b][j-1] + exc[i] - exc[b] - sum[b] * (rev[i] - rev[b])
f[a][j-1] - f[b][j-1] + exc[b] - exc[a] + sum[a] * rev[a] - sum[b] * rev[b]
< sum[a] * rev[i] - sum[b] * rev[i]
f[a][j-1] - exc[a] + sum[a] * rev[a] - f[b][j-1] + exc[b] - sum[b] * rev[b]
< sum[a] * rev[i] - sum[b] * rev[i]
f[a][j-1] - exc[a] + sum[a] * rev[a] - f[b][j-1] + exc[b] - sum[b] * rev[b]) / (sum[a] - sum[b])
< rev[i]

#include <cstdio>
#include <iostream>
#include <algorithm>
#define N 200010
using namespace std;

int n, K;
double exc[N], sum[N], rev[N];
double t[N];
double f[N][55];

inline double gety(int x, int p){
return f[x][p] - exc[x] + sum[x] * rev[x];
}

inline double getk(int j, int k, int p){
//return (gety(j, p) - gety(k, p)) / (sum[j] - sum[k]);
return gety(j, p) - gety(k, p);
}

inline double cal(int k, int i){
return exc[i] - exc[k] - sum[k] * (rev[i] - rev[k]);
}

inline void add(int i, int k){
while(head < tail-1 && getk(i, q[tail-1], k) * (sum[q[tail-1]] - sum[q[tail-2]]) < getk(q[tail-1], q[tail-2], k) * (sum[i] - sum[q[tail-1]])) tail--;
q[tail++] = i;
}

inline int getmax(int i, int k){
}

int main(){
freopen("game.in", "r", stdin);
freopen("game.out", "w", stdout);
scanf("%d%d", &n, &K);
for(register int i=1; i<=n; ++i) scanf("%lf", &t[i]);
for(register int i=1; i<=n; ++i){
sum[i] = sum[i-1] + t[i];
rev[i] = rev[i-1] + 1.0 / t[i];
exc[i] = exc[i-1] + sum[i] / t[i];
f[i][1] = exc[i];
}
for(int j=2; j<=K; ++j){
q[tail++] = 0;
for(register int i=1; i<=n; ++i) add(i, j-1);
for(register int i=1; i<=n; ++i){
if(i >= j){
int k = getmax(i, j-1);
f[i][j] = f[k][j-1] + cal(k, i);
}
else f[i][j] = 1e50;
}
}
printf("%.2f\n", f[n][K]);
return 0;
}
0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：38353次
• 积分：3335
• 等级：
• 排名：第11738名
• 原创：310篇
• 转载：1篇
• 译文：0篇
• 评论：2条
文章分类
阅读排行
评论排行