game 游戏 (斜率优化dp)

标签: 斜率优化dp
319人阅读 评论(0) 收藏 举报
分类:

game 游戏

10.16

思路:
f[i][j]表示前i个数分j段并全部获得的最小期望步数
f[i][j] = f[i-1][k] + cal(k+1, i) cal(k+1, i)表示k+1到i这一段分成一个部分并获得的最小期望步数
cal(k+1, i) = singma( (sum[x]-sum[k]) / t[x] ) ( k+1 <= x <= i )
= singma( sum[x] / t[x] ) - sum[k] * singma( 1.0 / t[x] ) ( k+1 <= x <= i )
sum[i] = singma(t[i])
rev[i] = singma(1.0 / t[i])
exc[i] = singma(sum[i] / t[i])
cal(k+1, i) = exc[i] - exc[k] - sum[k] * (rev[i] - rev[k])
f[a][j-1] + exc[i] - exc[a] - sum[a] * (rev[i] - rev[a])
< f[b][j-1] + exc[i] - exc[b] - sum[b] * (rev[i] - rev[b])
f[a][j-1] - f[b][j-1] + exc[b] - exc[a] + sum[a] * rev[a] - sum[b] * rev[b]
< sum[a] * rev[i] - sum[b] * rev[i]
f[a][j-1] - exc[a] + sum[a] * rev[a] - f[b][j-1] + exc[b] - sum[b] * rev[b]
< sum[a] * rev[i] - sum[b] * rev[i]
f[a][j-1] - exc[a] + sum[a] * rev[a] - f[b][j-1] + exc[b] - sum[b] * rev[b]) / (sum[a] - sum[b])
< rev[i]

#include <cstdio>
#include <iostream>
#include <algorithm>
#define N 200010
using namespace std;

int n, K;
int q[N], head, tail;
double exc[N], sum[N], rev[N];
double t[N];
double f[N][55];

inline double gety(int x, int p){
    return f[x][p] - exc[x] + sum[x] * rev[x];
}

inline double getk(int j, int k, int p){
    //return (gety(j, p) - gety(k, p)) / (sum[j] - sum[k]);
    return gety(j, p) - gety(k, p);
}

inline double cal(int k, int i){
    return exc[i] - exc[k] - sum[k] * (rev[i] - rev[k]);
}

inline void add(int i, int k){
    while(head < tail-1 && getk(i, q[tail-1], k) * (sum[q[tail-1]] - sum[q[tail-2]]) < getk(q[tail-1], q[tail-2], k) * (sum[i] - sum[q[tail-1]])) tail--;
    q[tail++] = i;
}

inline int getmax(int i, int k){
    while(head < tail-1 && getk(q[head+1], q[head], k) < rev[i] * (sum[q[head+1]] - sum[q[head]])) head++;
    return q[head];
}

int main(){
    freopen("game.in", "r", stdin);
    freopen("game.out", "w", stdout);
    scanf("%d%d", &n, &K);
    for(register int i=1; i<=n; ++i) scanf("%lf", &t[i]);
    for(register int i=1; i<=n; ++i){
        sum[i] = sum[i-1] + t[i];
        rev[i] = rev[i-1] + 1.0 / t[i];
        exc[i] = exc[i-1] + sum[i] / t[i];
        f[i][1] = exc[i];
    }
    for(int j=2; j<=K; ++j){
        head = tail = 0;
        q[tail++] = 0;
        for(register int i=1; i<=n; ++i) add(i, j-1);
        for(register int i=1; i<=n; ++i){
            if(i >= j){
                int k = getmax(i, j-1);
                f[i][j] = f[k][j-1] + cal(k, i);
            }
            else f[i][j] = 1e50;
        }
    }
    printf("%.2f\n", f[n][K]);
    return 0;
}
查看评论

斜率优化dp小结

单调队列优化在写斜率优化之前,我们来回顾一下单调队列优化的dp 1. 对于如下形式的dp方程 dp[i]=min{dp[j]+f(j)}(0...
  • lxc779760807
  • lxc779760807
  • 2016-05-10 21:02:45
  • 3387

[模板] 斜率优化Dp详解

算法简介今天xinyue讲了斜率优化,全程懵逼,居然还有这么牛逼的东西。 于是与achen讨论了一下,总结一些东西。 斜率优化Dp其实是单调队列的推广,单调队列、旋转卡壳、斜率优化都利用了单调性降...
  • Bill_Yang_2016
  • Bill_Yang_2016
  • 2017-01-22 19:29:18
  • 2353

CDQ分治与斜率优化DP——学习笔记

我们知道当斜率优化DP中的点的x坐标不单调时,需要splay来维护凸壳,但是代码量比较大,容易写挂。 我们还有一种神奇的做法:CDQ分治。 先把n个状态排成一个序列。考虑一个分治过程solve(L...
  • CHHNZ
  • CHHNZ
  • 2017-02-17 12:03:08
  • 468

斜率优化DP学习笔记

对于一类状态转移方程可以写成 f[i]=min/max(a[i]*b[j]+G[j])+H[i](a、H是只和i有关的函数,b、G是只和j有关的函数) 且a和b至少有一个是单调的动态规划问题,我们可以...
  • Tag_king
  • Tag_king
  • 2015-04-17 10:19:00
  • 1514

动态规划(DP)优化之斜率优化讲解

“DP的斜率优化——对不必要的状态量进行抛弃,对不优的状态量进行搁置,使得在常数时间内找到最优解成为可能。斜率优化依靠的是数形结合的思想,通过将每个阶段和状态的答案反映在坐标系上寻找解答的单调性,来在...
  • PomeCat
  • PomeCat
  • 2017-06-01 16:23:51
  • 938

dp的斜率优化与单调队列优化

dp的队列优化与斜率优化
  • Demon_Rieman
  • Demon_Rieman
  • 2017-09-28 18:29:26
  • 108

[斜率优化DP] codeforces 673E. Levels and Regions

题意: 要把1~n1~n分成kk组,每组内的数必须连续,组与组不相交且每个数必须属于一个组,并且任意ii有一个参数tit_i。 如果[l,r][l,r]为一组,那么从ll走到l+1l+1的概率是t...
  • kg20006
  • kg20006
  • 2016-05-08 18:08:14
  • 1436

bzoj1767 树上dp斜率优化+二分

题目描述oi国是一个温暖美丽的地方,其地图是一个树结构,树的根节点就是oi城的首都——orzboshi城。orzboshi城是国王boshi办公的地方,他每天都会收到来自其他城市的信息。oi国的信息传...
  • litble
  • litble
  • 2017-08-08 17:11:03
  • 496

模型化理解单调队列优化和斜率优化DP

抽象理解,脱离题目
  • Leo_h1104
  • Leo_h1104
  • 2016-06-30 20:32:04
  • 1232

dp 背包讲解 动态规划优化

  • 2011年08月30日 20:00
  • 286KB
  • 下载
    个人资料
    持之以恒
    等级:
    访问量: 5万+
    积分: 3470
    排名: 1万+
    文章分类