歼击机设计与软件开发

作者借《飞机总体设计》发现,沈飞专家谈到的飞机总体设计问题与软件开发问题相似。如航空院校重职称轻应用,毕业生需实践胜任工作;飞机和软件总体设计本质都是权衡折衷的艺术,部分程序员持技术至上观点,不适合做系统分析员或架构师。


歼击机设计与软件开发

跟北航的朋友借了本北航出版社2001年版的《飞机总体设计》。我对飞行器设计一窍不通,也不想学习,主要是看到这本书的主编是大名鼎鼎的顾诵芬(歼8,歼8-II),才拿来翻一翻。没想到,才看了前言就发现,沈飞这些飞机设计专家们谈到的飞机总体设计问题,和今天我们遇到的软件开发问题几乎一模一样。看下面这两段话(我猜这两段话就是顾诵芬写的):

“……这一成功(指歼教-1的成功),却给部分同志一个错觉,误认为飞机设计并不困难,好像20世纪50年代学校教的那些材料也够用了。这种思潮一直延续到文化大革命以后,甚至航空院校认为飞机设计没有什么好教的,为了评职称、评成果,大批搞飞机设计的教师都转向了结构有限元分析和优化设计,以至于20世纪80年代以来的飞机设计专业毕业生分配到设计研究所后,大都一时拿不起工作,要经过几年实践之后才能逐步胜任工作。”

“另一方面,改革开放后与国外航空发达国家一接触,发现我们和国外歼击机的差距关键在功能系统,特别是航空电子火控系统。飞机设计已不能再停留在气动、结构、强度等专业,要设计出现代化的歼击机,总体设计人员必须懂得组成优良歼击机的各个系统。由于各种系统的专业技术不断发展,系统设计的人员越来越深地陷入了本专业的技术发展,而忽视了本专业在飞机总体中的作用,因此摆在总体设计人员面前要权衡折衷的问题越来越多。飞机设计实际上是一门能够合理地折衷各种专业矛盾,而使飞机整体最优的工程专业。……”

前一段话说的航空院校不重视应用,只重视评职称、评成果,这不和现在大多数计算机系的情况差不多吗?说毕业生毕业后一时拿不起工作,要经过几年实践之后才能逐步胜任工作,这我自己太有体会了,大多数有用的知识不都是在工作中学的吗?

后一段话就更能说明问题了。飞机总体设计在本质上是一门权衡和折衷的艺术,软件的总体设计又何尝不是如此啊!

我见过不少程序员一心想成为系统分析员或软件架构师,却总也不愿意承认从全系统角度考虑问题的重要性,总也不相信好的系统都是无数次权衡和折衷的结果。他们把自己绝大部分时间都花在钻研某种时髦或自己最喜欢的技术上,并坚定地相信该技术可以帮他们解决所有问题。

——我不是说这样做不好,我的意思是说,像这样持技术至上观点的人非常适于做项目组内的技术攻关者,但绝对不适合做系统分析员或软件架构师,因为他们很少考虑客户的意见、用户的习惯、资源的限制、市场的制约等等重要问题,在遇到困难时,他们也很少愿意在技术上做出任何让步,“权衡”和“折衷”对他们来说,也许只是另一个世界里的词汇罢了。

再重复一遍:“飞机设计实际上是一门能够合理地折衷各种专业矛盾,而使飞机整体最优的工程专业。”把这句话里的“飞机”换成“软件”,也一样成立。

 

卷积神经网络(CNN)是针对多维网格数据(如图像、视频)设计的深度学习架构,其结构灵感来源于生物视觉系统对信息的分层处理机制。该模型通过局部连接、参数共享、层级特征提取等策略,有效捕获数据中的空间模式。以下从结构特性、工作机制及应用维度展开说明: **1. 局部连接卷积运算** 卷积层利用可学习的多维滤波器对输入进行扫描,每个滤波器仅作用于输入的一个有限邻域(称为感受野),通过线性加权非线性变换提取局部特征。这种设计使网络能够聚焦于相邻像素间的关联性,从而识别如边缘走向、色彩渐变等基础视觉模式。 **2. 参数共享机制** 同一卷积核在输入数据的整个空间范围内保持参数不变,大幅降低模型复杂度。这种设计赋予模型对平移变换的适应性:无论目标特征出现在图像的任何区域,均可由相同核函数检测,体现了特征位置无关性的建模思想。 **3. 特征降维空间鲁棒性** 池化层通过对局部区域进行聚合运算(如取最大值或均值)实现特征降维,在保留显著特征的同时提升模型对微小形变的容忍度。这种操作既减少了计算负荷,又增强了特征的几何不变性。 **4. 层级特征抽象体系** 深度CNN通过堆叠多个卷积-池化层构建特征提取金字塔。浅层网络捕获点线面等基础模式,中层网络组合形成纹理部件,深层网络则合成具有语义意义的对象轮廓。这种逐级递进的特征表达机制实现了从像素级信息到概念化表示的自动演进。 **5. 非线性扩展泛化控制** 通过激活函数(如ReLU及其变体)引入非线性变换,使网络能够拟合复杂决策曲面。为防止过拟合,常采用权重归一化、随机神经元失活等技术约束模型容量,提升在未知数据上的表现稳定性。 **6. 典型应用场景** - 视觉内容分类:对图像中的主体进行类别判定 - 实例定位识别:在复杂场景中标定特定目标的边界框及类别 - 像素级语义解析:对图像每个像素点进行语义标注 - 生物特征认证:基于面部特征的个体身份鉴别 - 医学图像判读:辅助病灶定位病理分析 - 结构化文本处理:循环神经网络结合处理序列标注任务 **7. 技术演进脉络** 早期理论雏形形成于1980年代,随着并行计算设备的发展大规模标注数据的出现,先后涌现出LeNet、AlexNet、VGG、ResNet等里程碑式架构。现代研究聚焦于注意力分配、跨层连接、卷积分解等方向,持续推动模型性能边界。 卷积神经网络通过其特有的空间特征提取范式,建立了从原始信号到高级语义表达的映射通路,已成为处理几何结构数据的标准框架,在工业界学术界均展现出重要价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值