《林阴小路》疏辨

2004年12月的《程序员》杂志发表了我一篇名为《我的2004,我的林阴小路》的文章。那本是一份个人意义上的年度总结。所以,我在写作时选择的是非常“个性化”的视角,表达上也含蓄了一些,整篇文章看上去并不像随处可见的“网文”那样通俗易懂。应几位读者的要求,我在这里对文章里较重要的几个地方做些疏解和辨正。

★ “我的2004是一条没有尽头的林阴小路”

文章的标题和立意都来自海德格尔的《林中路》。在海德格尔的作品里,我对《林中路》最熟,因为那是海德格尔最没有大师架子的作品之一。“林乃树林的古名。林中有路。这些路多半突然断绝在杳无人迹处。……每人各奔前程,但却在同一林中。常常看来仿佛彼此相类。然而只是看来仿佛如此而已。”——不是吗?我们这些IT人不就是在同一林中各奔前程的芸芸众生吗?

★ “当时的我早已像古人预言的那样,进入‘目盲’、‘耳聋’、‘口爽’和‘心发狂’的状态了”

这里的“目盲”、“耳聋”等说法来自《老子》第12章。引用陈鼓应先生的白话译文就是:“缤纷的色彩使人眼花缭乱;纷杂的音调使人听觉不敏;饮食餍饫会使人舌不知味;纵情狩猎使人心放荡;稀有货品使人行为不轨……”这其实就是今天这个充斥着信息爆炸和欲望膨胀的世界里人心浮动的真实写照。拿程序员来说,当你看到C++语言每隔5年就“面目全非”一次的时候,当你看到Java平台每隔6个月就“推陈出新”一回的时候,当你看到开发和测试工具每隔3个月就“更新换代”一轮的时候,你真的认为这就是软件开发的全部吗?不,我想你不会的,一个聪明的程序员总能在“心发狂”之余找到以不变应万变的法门,并由此回归真正的自我。

★ “科学上的真理通常有着单一和纯粹的特点,而软件开发之类的工程技术却更多地追求有限资源下最为恰当和稳妥的解决方案”

我的意思并不是说软件开发或类似的工程技术就不用追

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
这问题涉及到最短路径的算法,可以使用 Dijkstra 算法或 Floyd 算法来求解。下面是使用 Dijkstra 算法的示例代码。 假设三维点云数据是以数组形式存储的,数组名为 points,每个点的坐标分别是 points[i][0]、points[i][1]、points[i][2]。我们需要计算每个点到其他点的最小路径,可以使用一个二维数组 distances 来保存结果,distances[i][j] 表示从点 i 到点 j 的最小路径。 ``` #include <iostream> #include <vector> #include <queue> #include <limits> using namespace std; const int INF = numeric_limits<int>::max(); int dijkstra(vector<vector<int>>& graph, int start, int end) { int n = graph.size(); vector<int> distances(n, INF); vector<bool> visited(n, false); priority_queue<pair<int, int>, vector<pair<int, int>>, greater<>> pq; distances[start] = 0; pq.push({0, start}); while (!pq.empty()) { auto [dist, node] = pq.top(); pq.pop(); if (visited[node]) { continue; } visited[node] = true; for (int i = 0; i < n; ++i) { if (graph[node][i] != INF && !visited[i]) { int new_dist = dist + graph[node][i]; if (new_dist < distances[i]) { distances[i] = new_dist; pq.push({new_dist, i}); } } } } return distances[end]; } int main() { int n; cin >> n; vector<vector<int>> points(n, vector<int>(3)); for (int i = 0; i < n; ++i) { cin >> points[i][0] >> points[i][1] >> points[i][2]; } vector<vector<int>> graph(n, vector<int>(n, INF)); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (i != j) { int dx = points[i][0] - points[j][0]; int dy = points[i][1] - points[j][1]; int dz = points[i][2] - points[j][2]; int dist = dx * dx + dy * dy + dz * dz; graph[i][j] = dist; } } } vector<vector<int>> distances(n, vector<int>(n, INF)); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (i != j) { distances[i][j] = dijkstra(graph, i, j); } } } for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { cout << distances[i][j] << " "; } cout << endl; } return 0; } ``` 上面的代码中,我们先读入点云数据,然后计算任意两个点之间的距离,并使用 Dijkstra 算法计算出每个点到其他点的最小路径。最后将结果保存在 distances 数组中并输出。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangyonggang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值