机器学习
文章平均质量分 88
wds2006sdo
这个作者很懒,什么都没留下…
展开
-
最流行的4个机器学习数据集
转载自:http://www.jianshu.com/p/be23b3870d2e机器学习算法需要作用于数据,而数据的本质则决定了应用的机器学习算法是否合适,而数据的质量也会决定算法表现的好坏程度。所以会研究数据,会分析数据很重要。本文作为学习研究数据系列博文的开篇,列举了4个最流行的机器学习数据集。IrisIris也称鸢尾花卉数据集,是一类多重变量分析的数据集。通过花萼长度,转载 2016-11-13 08:51:21 · 4884 阅读 · 1 评论 -
李航《统计学习方法》第七章——用Python实现支持向量机模型(伪造数据集)
相关文章: 李航《统计学习方法》第二章——用Python实现感知器模型(MNIST数据集) 李航《统计学习方法》第三章——用Python实现KNN算法(MNIST数据集) 李航《统计学习方法》第四章——用Python实现朴素贝叶斯分类器(MNIST数据集) 李航《统计学习方法》第五章——用Python实现决策树(MNIST数据集) 李航《统计学习方法》第六章——用Py原创 2016-11-14 10:42:49 · 14477 阅读 · 11 评论 -
李航《统计学习方法》第六章——用Python实现最大熵模型(MNIST数据集)
相关文章: 李航《统计学习方法》第二章——用Python实现感知器模型(MNIST数据集) 李航《统计学习方法》第三章——用Python实现KNN算法(MNIST数据集) 李航《统计学习方法》第四章——用Python实现朴素贝叶斯分类器(MNIST数据集) 李航《统计学习方法》第五章——用Python实现决策树(MNIST数据集) 李航《统计学习方法》第六章——用Py原创 2016-11-09 22:01:10 · 20655 阅读 · 9 评论 -
李航《统计学习方法》第六章——用Python实现逻辑斯谛回归(MNIST数据集)
相关文章: - 李航《统计学习方法》第二章——用Python实现感知器模型(MNIST数据集) - 李航《统计学习方法》第三章——用Python实现KNN算法(MNIST数据集) - 李航《统计学习方法》第四章——用Python实现朴素贝叶斯分类器(MNIST数据集) - 李航《统计学习方法》第五章——用Python实现决策树(MNIST数据集)第六章有两个算法,分原创 2016-11-08 17:38:56 · 10247 阅读 · 10 评论 -
李航《统计学习方法》第五章——用Python实现决策树(MNIST数据集)
相关文章李航《统计学习方法》第二章——用Python实现感知器模型(MNIST数据集) 李航《统计学习方法》第三章——用Python实现KNN算法(MNIST数据集)李航《统计学习方法》第四章——用Python实现朴素贝叶斯分类器(MNIST数据集)看了决策树啊,就有那么几个疑问:决策树是否只能处理特征值可数的情况决策树是否无法处理不在训练集中出现的特征值这几个疑问等以后有空的时候在慢原创 2016-10-18 15:30:59 · 23614 阅读 · 13 评论 -
李航《统计学习方法》第四章——用Python实现朴素贝叶斯分类器(MNIST数据集)
相关文章 - 李航《统计学习方法》第二章——用Python实现感知器模型(MNIST数据集) - 李航《统计学习方法》第三章——用Python实现KNN算法(MNIST数据集)个人认为朴素贝叶斯比较适合特征维度较小的情况,但是MNIST数据已到达上百唯的特征,概率联乘起来超过Python float能表示的极限,因此需要一些trick来保证精度。朴素贝叶斯按照传统不详述该算法,具体内容原创 2016-07-20 14:46:36 · 26144 阅读 · 20 评论 -
李航《统计学习方法》第三章——用Python实现KNN算法(MNIST数据集)
相关文章: 李航《统计学习方法》第二章——用Python实现感知器算法(MNIST数据集) 李航《统计学习方法》第四章——用Python实现朴素贝叶斯分类器(MNIST数据集) 看了第三章 k近邻法 (k-nearest neighbor, k-NN) , 发现KNN算法真的好适合在MNIST数据集上分类。因为KNN实际上就是一个少数服从多数的投票模型,所以可以用在多分类的原创 2016-07-17 16:42:32 · 26045 阅读 · 6 评论 -
李航《统计学习方法》第二章——用Python实现感知器模型(MNIST数据集)
相关文章: 李航《统计学习方法》第三章——用Python实现KNN算法(MNIST数据集) 李航《统计学习方法》第四章——用Python实现朴素贝叶斯分类器(MNIST数据集) 最近在读NLP相关论文,发现最新的NLP基本都是利用机器学习的方法对自然语言进行处理,于是想要多了解了解机器学习的知识。看到很多人推荐李航博士的《统计学习方法》一书,于是打算以此书作为机器学习入门教原创 2016-07-16 11:40:18 · 47704 阅读 · 26 评论 -
李航《统计学习方法》第十章——用Python实现隐马尔科夫模型
相关文章: 李航《统计学习方法》第二章——用Python实现感知器模型(MNIST数据集) 李航《统计学习方法》第三章——用Python实现KNN算法(MNIST数据集) 李航《统计学习方法》第四章——用Python实现朴素贝叶斯分类器(MNIST数据集) 李航《统计学习方法》第五章——用Python实现决策树(MNIST数据集) 李航《统计学习方法》第六章——用Py原创 2017-07-16 22:52:45 · 14525 阅读 · 8 评论 -
优达学城 深度学习 任务1
这几天刚好有环境,打算学习一下深度学习 看了一圈介绍,发现优达学城的深度学习课程作为入门课程还是不错的 今天看了第一章节的视频,顺便做了任务1 任务1难度不大,按照网站上的说明可以完成下载、打包等工作 Problem 6 没有给代码,下面是我的代码,供大家参考import numpy as npimport picklefrom sklearn.linear_model import Lo原创 2016-12-20 22:02:43 · 7124 阅读 · 3 评论 -
优达学城 深度学习 任务3
先上传保存着,等有空的时候再修改problem 1在任务二最后一步基础上做就好,我不太理解两个矩阵的l2-loss应该怎么加,根据自己的理解,正则化是为了抵消异常的特征输入,因此应该是两个L2-loss一起加,结果不错,正确率到了92% problem 2problem2是让我们自己实验感受一下overfit导致的问题。 我这里强制从10个batch中训练 可以看出minibatch的正确率一原创 2016-12-22 13:04:28 · 6989 阅读 · 0 评论 -
优达学城 深度学习 任务2
不得不说优达学城的课程作为入门还真是不错,打算明年买一个纳米课程试一下。说明任务2可以说是真正开始进入深度学习的领域 还是用任务1处理好的数据集任务分为3个阶段梯度下降算法(线性分类器)批随机梯度下降算法(线性分类器)一层隐藏层数据集使用noMNIST数据集 基于机器性能及运行时间的考量 训练集大小:30000,测试集大小:10000 注意点该代码要求tensorflow >=0.原创 2016-12-21 16:39:50 · 5549 阅读 · 2 评论 -
python 实现 softmax分类器(MNIST数据集)
最近一直在外面,李航那本书没带在身上,所以那本书的算法实现估计要拖后了。 这几天在看Andrew Ng 机器学习的课程视频,正好看到了Softmax分类器那块,发现自己之前理解perceptron与logistic regression是有问题的。这两个算法真正核心的不同在于其分类函数的不同,perceptron采用一个分段函数作为分类器,logistic regression采用sigmod函数原创 2016-12-16 21:54:12 · 17129 阅读 · 9 评论 -
李航《统计学习方法》第八章——用Python+Cpp实现AdaBoost算法(MNIST数据集)
相关文章: 李航《统计学习方法》第二章——用Python实现感知器模型(MNIST数据集) 李航《统计学习方法》第三章——用Python实现KNN算法(MNIST数据集) 李航《统计学习方法》第四章——用Python实现朴素贝叶斯分类器(MNIST数据集) 李航《统计学习方法》第五章——用Python实现决策树(MNIST数据集) 李航《统计学习方法》第六章——用Py原创 2016-11-17 09:31:19 · 14538 阅读 · 4 评论