关闭

codeforces 557D Vitaly and Cyclef(二分图染色)

183人阅读 评论(0) 收藏 举报
分类:

题目链接:http://codeforces.com/problemset/problem/557/D

大意:

      给出n个点以及m条边,以及没条边的两个点,求最少添加几条边能得到一个奇环,以及添加边的方法数。

一道二分图的染色的讨论题

       二分图中只有树或偶环, 奇环不能存在二分图中(自己可以画画), 所以我们可以用二分图的染色的方法来判断奇偶环或树。

分析:

     给n个点, 最多填加3条边,就一定能形成奇环, 所以添加的边的条数为0, 1, 2, 3;

       按照添加的边数进行讨论

添加3条边:-------原图的边为0

                     sum = n*(n-1)*(n-2)/6;

      添加2条边:-------原图没有边共顶点/各个顶点的度都不大于1

      sum = m*(n-2);

     添加0条边:-------原图中本身就有奇环

   sum = 1;

      添加1条边:------原图中只有树或偶环

                  sum = Σ(sw[i]-1)*sw[i]/2+(sb[i]-1)*sb[i]/2;(因为图不一定连通)

AC代码:

#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
using namespace std;
const int maxn = 100005;
const int inf = 0x3f3f3f3f;
int degree[maxn], color[maxn];
int sw[maxn], sb[maxn];
vector<int> G[maxn];
int n, m;
int dfs(int u, int t, int x)
{
    if(color[u] && color[u]!=t)
        return -1;
    if(color[u] && color[u]==t)
        return 1;
    if(t == 1)
        sw[x]++;
    else
        sb[x]++;
    color[u] = t;
    for(int i = 0; i < G[u].size(); i++)
    {
        int v = G[u][i];
        if(dfs(v, -t, x)==-1)
            return -1;
    }
    return 1;
}
int main()
{
    int a, b, Max = 0;
    memset(color, 0, sizeof(color));
    memset(degree, 0, sizeof(degree));
    memset(sw, 0, sizeof(sw));
    memset(sb, 0, sizeof(sb));
    scanf("%d%d", &n, &m);
    for(int i = 0; i < m; i++)
    {
        scanf("%d%d", &a, &b);
        degree[a]++;
        degree[b]++;
        Max = max(Max, degree[a]);
        Max = max(Max, degree[b]);
        G[a].push_back(b);
        G[b].push_back(a);
    }
    int ans;
    long long sum;
    if(m == 0)
        ans = 3, sum = (long long)n*(n-1)*(n-2)/6;
    else if(Max <= 1)
        ans = 2, sum = (long long)m*(n-2);
    else
    {
        int flag = 0;
        for(int i = 1; i <= n; i++)
            if(!color[i])
            {
                if(dfs(i, 1, i) == -1)
                {
                    flag = 1;
                    break;
                }
            }
        if(flag)
            ans = 0, sum = 1;
        else
        {
            ans = 1, sum = 0;
            for(int i = 1; i <= n; i++)
                sum += (long long)sw[i]*(sw[i]-1)/2+(long long)sb[i]*(sb[i]-1)/2;
        }
    }
    printf("%d %I64d\n", ans, sum);
    return 0;
}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:30013次
    • 积分:1286
    • 等级:
    • 排名:千里之外
    • 原创:101篇
    • 转载:16篇
    • 译文:0篇
    • 评论:2条
    最新评论