【数据挖掘数学基础】02常用分布(下)

这篇博客详细介绍了数据挖掘中常用的分布,包括卡方分布、t分布和F分布。卡方分布由多个标准正态分布的平方和构成,随着自由度增加趋向对称。t分布用于小样本分析,其形状随自由度增加接近标准正态分布。F分布由两个独立的卡方分布构成,常用于方差分析和回归检验。随着自由度增大,这些分布最终趋于正态分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

四、分布(卡方分布)

五、t分布

六、F分布

七、各分布的总结


四、X^{2}分布(卡方分布)

1、定义:设随机变量X1,X2,……Xn相互独立,且XI(i=1,2,……,n)服从标准正态分布,则它们的平方和服从自由度为n的X2分布。

2、性质特点:

  • 因卡方分布是平方和,所以分布的变量值始终为正;
  • 分布的形状取决于其自由度n的大小,通常为不对称的正偏分布(右偏分布),但随着自由度的增大逐渐趋向对称;

  • 常用于方差的估计和假设检验,以及列联分析中;
  • 期望为:E(x2)=n,方差为:D(x2)=2n(n为自由度);
  • 可加性:若U和V为两个独立的x2分布随机变量,U~x2(n1),V~x2(n2),则U+V这一随机变量服从自由度为n1+n2的x2分布;
  • 当自由度增加到足够大时,卡方分布的概率密度曲线趋于对称,当n —>+∞时,x2分布的极限分布是正态分布。

理解:卡方分布是相互独立的标准正态分布的平方

五、t分布

1、定义:设随机变量X~N(0,1),Y~x2(n),且X与Y独立,则其分布称为t分布,记为t(n),其中n为其自由度。

2、性质和特点:

  • 当n≥2时,t分布的数学期望E(t)=0;
  • 当n≥3时,t分布的方差D(t)=n/(n-2);
  • 自由度为1的t分布称为柯西分布;
  • 随着n自由度的增加,t分布的密度函数越来越接近标准正态分布的密度函数。实际中
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值