最全汇总GAN网络及其各种变体(附论文及代码实现)

本文由车神哥分享,详述了GAN(生成对抗网络)及其多种变体,包括ACGAN、BiGAN、CycleGAN等,每个模型都附带论文引用和代码实现。通过阅读论文和实践代码,有助于深入理解这些模型的原理。文章适合人工智能和深度学习领域的研究者与开发者阅读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💖作者简介:大家好,我是车神哥,府学路18号的车神🥇
⚡About—>车神:从寝室实验室快3分钟,最慢3分半(那半分钟其实是等绿
📝个人主页:车手只需要车和手,压力来自论文_府学路18号车神_CSDN博客
🥇 官方认证:人工智能领域优质创作者
🎉点赞评论收藏 == 养成习惯一键三连)😋

⚡希望大家多多支持🤗~一起加油 😁


最近小论文难产啊,各种网络、各种公式推导、各种复杂结构,各种…还是多读读论文,总有好处的~

下面主要总结了GAN网络及其各种变体模型,并附录上模型的论文出处及代码,结合最原始的论文和代码实现,可以加深对模型原理的理解。(文章主要内容来源于网络


前言

下面给出一个整理出来的总体大纲思维导图,下面再分别给出具体内容。文献和代码可直接跳转下载哦~
在这里插入图片描述

GAN(经典)

实现最原始的,基于多层感知器构成的生成器和判别器,组成的生成对抗网络模型(Generative Adversarial)。

在这里插入图片描述

参考论文:《Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/gan/gan.py

Auxiliary Classifier GAN

实现辅助分类-生成对抗网络(Auxiliary Classifier Generative Adversarial Network)。

在这里插入图片描述

参考论文:《Conditional Image Synthesis With Auxiliary Classifier GANs》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/acgan/acgan.py

BiGAN

实现双向生成对抗网络(Bidirectional Generative Adversarial Network)。
在这里插入图片描述

参考论文:《Adversarial Feature Learning》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/bigan/bigan.py

BGAN

实现边界搜索生成对抗网络(Boundary-Seeking Generative Adversarial Networks)。
在这里插入图片描述

参考论文:《Boundary-Seeking Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/bgan/bgan.py

CC-GAN

实现基于上下文的半监督生成对抗网络(Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks)。
在这里插入图片描述

参考论文:《Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/ccgan/ccgan.py

CoGAN

实现耦合生成对抗网络(Coupled generative adversarial networks)。

在这里插入图片描述

参考论文:《Coupled Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/cogan/cogan.py

CycleGAN

实现基于循环一致性对抗网络(Cycle-Consistent Adversarial Networks)的不成对的Image-to-Image 翻译。
在这里插入图片描述

参考论文:《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/cyclegan/cyclegan.py

DCGAN

实现深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network)。
在这里插入图片描述

参考论文:《Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/dcgan/dcgan.py

DualGAN

实现对偶生成对抗网络(DualGAN),基于无监督的对偶学习进行Image-to-Image翻译。
在这里插入图片描述
参考论文:《DualGAN: Unsupervised Dual Learning for Image-to-Image Translation》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/dualgan/dualgan.py

InfoGAN

实现的信息最大化的生成对抗网络(InfoGAN),基于信息最大化生成对抗网络的可解释表示学习。
在这里插入图片描述

参考论文:《InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/infogan/infogan.py

LSGAN

实现最小均方误差的生成对抗网络(Least Squares Generative Adversarial Networks)。
在这里插入图片描述

参考论文:《Least Squares Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/lsgan/lsgan.py

SGAN

实现半监督生成对抗网络(Semi-Supervised Generative Adversarial Network)。
在这里插入图片描述

参考论文:《Semi-Supervised Learning with Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/sgan/sgan.py

WGAN

实现 Wasserstein GAN。
在这里插入图片描述

参考论文:《Wasserstein GAN》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/wgan/wgan.py

Reference

  • https://zhuanlan.zhihu.com/p/34016536

愿Paper一审即接收!God bless~


❤坚持读Paper,坚持做笔记,坚持学习,坚持刷力扣LeetCode❤!!!
坚持刷题!!!
To Be No.1

⚡⚡


创作不易⚡,过路能❤关注收藏点个赞三连就最好不过了

ღ( ´・ᴗ・` )

### 配置和自定义Ubuntu终端设置 #### 设置终端窗口大小和字体大小 对于希望调整Ubuntu终端窗口大小以及改变终端内使用的字体尺寸的用户来说,可以在系统的图形界面中通过特定选项实现这一需求[^2]。进入终端后,在编辑菜单下找到首选项,这里可以更改字体样式、大小以及其他显示属性。 #### 默认打开即最大化的终端 为了使每次启动的`gnome-terminal`都处于最大化状态,可修改其`.desktop`文件,在原有启动命令的基础上追加`--maximize`参数。此改动使得新开启的所有实例都会自动扩展至全屏模式。 ```bash # 找到并编辑 gnome-terminal 的 .desktop 文件路径通常位于 /usr/share/applications/ sudo nano /usr/share/applications/gnome-terminal.desktop ``` 在该文件内的`Exec=`行后面加上`--maximize`即可保存退出重启应用生效。 #### 自定义终端窗口位置 如果想要让终端总是在屏幕上的某个固定地点弹出,则需先利用工具获取目标区域的信息。这可通过执行如下指令完成: ```bash xwininfo ``` 运行上述命令之后点击任意已存在的窗口就能得到关于它的几何数据;依据这些数值再配合快捷方式设定来达到目的。创建一个新的键盘快捷键关联至下面这样的脚本将会很有帮助[^3]: ```bash #!/bin/bash geometry="WIDTHxHEIGHT+XOFFSET+YOFFSET" gnome-terminal --geometry=$geometry & ``` 请替换掉模板里的宽度高度还有偏移量部分为实际测量所得的具体数字。 #### 更改终端颜色方案 针对偏好不同色彩搭配的人群而言,Ubuntu允许简单几步就切换成黑白对比度高的配色——白色背景配上黑色文字。前往终端偏好设置里寻找外观标签页下的调色板选项卡,从中挑选预设主题或是手动输入RGB值来自定义前景色与背景色组合[^4]。 此外还可以进一步个性化命令行提示符的样子,比如加入当前登录用户的名称或者是机器的名字等元素,增强辨识度的同时也增加了趣味性。
评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

府学路18号车神

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值