最优化导论1

原创 2016年08月29日 18:32:38

证明方法

AB就是组合命题“(非A)或B”,经常读作“A当且仅当B”,“如果A,则B”、“A是B的充分条件”或者“B是A的必要条件”。可以将两个命题组合成等价命题的形式AB 读作“A成立,当且仅当B成立”或者“A等价于B”或者“A对于B是充分必要的”

向量与矩阵

  • 如果方程
    α1a1+α2a2++αkak=0

    中所有的系数αi(i=1,,k)都等于0,那么称向量集α1,α2,αk是先行无关的。
  • 如果向量集不是线性无关的,那么称其线性相关。
  • 如果集合中只包括一个向量0,由于对于任意α0,都有α0=0,因此,该集合是线性相关的,实际上,所有包含0向量的集合都是线性相关的。
  • 如果集合中只包括单个非零向量α0,只有α=0s时,才有aα=0成立,因此,该集合是线性相关的。
  • 给定向量α,如果存在标量a1,a2,ak,使得
    α=a1α1+a2α2++akαk

    那么称向量αα1,α2,αk的线性组合。
  • 命题2.1向量集α1,α2,αk是线性相关的,当且仅当集合中有一个向量可以表示为其他向量的线性组合。
  • ν表示为Rn的一个子集,如果ν在向量的加法和运算以及标量乘积运算下是封闭的,那么成为νRn的子空间。
  • 假定α1,α2,αkRn中的任意向量,它们所有的线性组合的集合称为α1,α2,αk张成的子空间,记为
    span[α1,α2,αk]=i=1kaiαi:α1,α2,αkRn

    对于向量α,子空间span[α]是由向量aα组成,α为任意的实数。同样α可表示为α1,α2,αk的线性组合,则有
    span[α1,α2,αk,α]=span[α1,α2,αk]
    ,因此,任意向量集合都能够张成一个子空间。
  • :给定子空间V,如果存在线性无关的向量集合α1,α2,αkV使得V=span[α1,α2,αk,α],那么称{α1,α2,αk}是子空间V的一组基。子空间V中的所有基都包含相同数量的向量,这一数量称为V的维数,记为dimV.
  • 命题2.2 如果{α1,α2,αk}V的一组基,那么V中的任意向量α可以唯一地表示为
    α=a1α1+a2α2++akαk

    其中,aiR,i=1,2,k.
  • 矩阵的秩 矩阵A中线性无关列的最大数目成为A的秩,记为rankA.可以看出rankA正是span[α1,α2,αk,α]的维数。
  • 命题2.3 以下运算,矩阵A的秩保持不变:
    1、矩阵A的某个(些)列乘以非零标量
    2、矩阵内部交换次序
    3、在矩阵中加入一列,该列是其他列的线性组合。
  • 定理2.1方程组Ax=b有解,当且仅当
    rankA=rank[A,b]

    一个非奇异(可逆)的矩阵是一个行列式非零的方阵。假定A是n×n的方阵,A 是非奇异的,当且仅当存在n×n方阵B,使得
    AB=BA=In
    其中In是单位矩阵
  • 定理2.2 考虑方程Ax=b,其中ARm×nrankA=m.可以通过n-m个未知数富裕任意值求解其他未知数来获取Ax=b的解。
  • 对于x,yRn,定义欧式内积
    <x,y>=i=1nxiyi=xTy

    内积是一个实值函数<>Rn×RnR,具有如下性质:
    1、非负性:<x,x>0 当且仅当x=0时,<x,x>=0
    2、对称性:<x,y>=<y,x>
    3、可加性:<x+y,z>=<x,z>+<y,z>
    4、齐次性:对于任意的rR,总有<rx,y>=r<y,x>
  • 特征值与特征向量
    这里写图片描述

设A,B两个n阶矩阵,如果存在n 阶可逆矩阵C使得CTAC=B,则称A与B合同,若P1AP=B则称A与B相似。如果C是正交矩阵CT=C1,则B与A既相似又合同。

  • 反身性:对于任意方阵A,都对自身合同
  • 对称性
  • 传递性
    这里写图片描述
    这里写图片描述
    这里写图片描述
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

最优化导论课后答案

  • 2017-08-24 10:45
  • 2.49MB
  • 下载

最优化导论 第四版

  • 2016-12-16 03:20
  • 46.27MB
  • 下载

最优化学习笔记(十五)——拟牛顿法(1)

拟牛顿法分为五部分来讲,本文这部分作为引言,第二部分讲Hessian矩阵逆矩阵的近似,第三部分秩1修正公式,第四部分为DFP算法,最后BFGS算法。     牛顿法是一种具有较高实用性的优化问题的求...

最优化方法及其应用导论

  • 2014-06-17 23:47
  • 773KB
  • 下载

KKT条件--约束问题最优化方法

KKT条件在约束条件下求解非线性规划问题很有用,是确定某点为最优点的一阶必要条件。而对于凸规划问题而言,KKT条件是局部极小点的一阶必要条件,同时也是充分条件,而且局部极小点就是全局极小点。

最优化算法第五章1

  • 2011-10-28 10:27
  • 226KB
  • 下载

最优化算法(一)

前言 最优化算法在机器学习中扮演着重要的角色,很多的机器学习算法最终都会归结为如下的最优化问题minfJ(x):=λΩ(f)+Remp(f)\min_f J(x):=\lambda\Omega(f)...

CS231n 学习笔记(3)——神经网络 part3 :最优化

stanford的course note 近日在维护中,所以换了http://cs231n.stanford.edu/slides/网页的lecture4作为最优化部分的学习资料。 训练神经网络的三...

无约束最优化方法

梯度的方向与等值面垂直。 二次收敛是指一个算法用于具有正定二次型函数时,在有限步可达到它的极小点。二次收敛与二阶收敛没有尽然联系,更不是一回事,二次收敛往往具有超线性以上的收敛性。一阶收敛不一定是线...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)