最优化导论1

证明方法

AB 就是组合命题“(非A)或B”,经常读作“A当且仅当B”,“如果A,则B”、“A是B的充分条件”或者“B是A的必要条件”。可以将两个命题组合成等价命题的形式 AB 读作“A成立,当且仅当B成立”或者“A等价于B”或者“A对于B是充分必要的”

向量与矩阵

  • 如果方程
    α1a1+α2a2++αkak=0

    中所有的系数 αi(i=1,,k) 都等于0,那么称向量集 α1,α2,αk 是先行无关的。
  • 如果向量集不是线性无关的,那么称其线性相关。
  • 如果集合中只包括一个向量0,由于对于任意 α0 ,都有 α0=0 ,因此,该集合是线性相关的,实际上,所有包含0向量的集合都是线性相关的。
  • 如果集合中只包括单个非零向量 α0 ,只有 α=0 s时,才有 aα=0 成立,因此,该集合是线性相关的。
  • 给定向量 α ,如果存在标量 a1,a2,ak ,使得
    α=a1α1+a2α2++akαk

    那么称向量 α α1,α2,αk 的线性组合。
  • 命题2.1向量集 α1,α2,αk 是线性相关的,当且仅当集合中有一个向量可以表示为其他向量的线性组合。
  • ν 表示为 Rn 的一个子集,如果 ν 在向量的加法和运算以及标量乘积运算下是封闭的,那么成为 ν Rn 的子空间。
  • 假定 α1,α2,αk Rn 中的任意向量,它们所有的线性组合的集合称为 α1,α2,αk 张成的子空间,记为
    span[α1,α2,αk]=i=1kaiαi:α1,α2,αkRn

    对于向量 α ,子空间 span[α] 是由向量 aα 组成, α 为任意的实数。同样 α 可表示为 α1,α2,αk 的线性组合,则有
    span[α1,α2,αk,α]=span[α1,α2,αk]
    ,因此,任意向量集合都能够张成一个子空间。
  • :给定子空间 V ,如果存在线性无关的向量集合α1,α2,αkV使得 V=span[α1,α2,αk,α] ,那么称 {α1,α2,αk} 是子空间 V 的一组基。子空间V中的所有基都包含相同数量的向量,这一数量称为 V 的维数,记为dimV.
  • 命题2.2 如果 {α1,α2,αk} V 的一组基,那么V中的任意向量 α 可以唯一地表示为
    α=a1α1+a2α2++akαk

    其中, aiR , i=1,2,k .
  • 矩阵的秩 矩阵A中线性无关列的最大数目成为A的秩,记为 rankA .可以看出 rankA 正是 span[α1,α2,αk,α] 的维数。
  • 命题2.3 以下运算,矩阵A的秩保持不变:
    1、矩阵A的某个(些)列乘以非零标量
    2、矩阵内部交换次序
    3、在矩阵中加入一列,该列是其他列的线性组合。
  • 定理2.1方程组 Ax=b 有解,当且仅当
    rankA=rank[A,b]

    一个非奇异(可逆)的矩阵是一个行列式非零的方阵。假定A是 n×n 的方阵,A 是非奇异的,当且仅当存在 n×n 方阵B,使得
    AB=BA=In
    其中 In 是单位矩阵
  • 定理2.2 考虑方程 Ax=b ,其中 ARm×n rankA=m .可以通过n-m个未知数富裕任意值求解其他未知数来获取 Ax=b 的解。
  • 对于 x,yRn ,定义欧式内积
    <x,y>=i=1nxiyi=xTy
    <script type="math/tex; mode=display" id="MathJax-Element-10708"> =\sum_{i=1}^{n}x_iy_i=x^Ty</script>
    内积是一个实值函数 <>Rn×RnR <script type="math/tex" id="MathJax-Element-10709"><·,·> R^n \times R^n \rightarrow R</script>,具有如下性质:
    1、非负性: <x,x>0 <script type="math/tex" id="MathJax-Element-10710"> \geq0 </script> 当且仅当 x=0 时, <x,x>=0 <script type="math/tex" id="MathJax-Element-10712"> =0</script>
    2、对称性: <x,y>=<y,x> <script type="math/tex" id="MathJax-Element-10713"> = </script>
    3、可加性: <x+y,z>=<x,z>+<y,z> <script type="math/tex" id="MathJax-Element-10714"> = + </script>
    4、齐次性:对于任意的 rR ,总有 <rx,y>=r<y,x> <script type="math/tex" id="MathJax-Element-10716"> =r </script>
  • 特征值与特征向量
    这里写图片描述
设A,B两个n阶矩阵,如果存在n 阶可逆矩阵C使得 CTAC=B ,则称A与B合同,若 P1AP=B 则称A与B相似。如果C是正交矩阵 CT=C1 ,则B与A既相似又合同。
  • 反身性:对于任意方阵A,都对自身合同
  • 对称性
  • 传递性
    这里写图片描述
    这里写图片描述
    这里写图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值