【第22期】观点:IT 行业加班,到底有没有价值?

最优化导论1

原创 2016年08月29日 18:32:38

证明方法

AB就是组合命题“(非A)或B”,经常读作“A当且仅当B”,“如果A,则B”、“A是B的充分条件”或者“B是A的必要条件”。可以将两个命题组合成等价命题的形式AB 读作“A成立,当且仅当B成立”或者“A等价于B”或者“A对于B是充分必要的”

向量与矩阵

  • 如果方程
    α1a1+α2a2++αkak=0

    中所有的系数αi(i=1,,k)都等于0,那么称向量集α1,α2,αk是先行无关的。
  • 如果向量集不是线性无关的,那么称其线性相关。
  • 如果集合中只包括一个向量0,由于对于任意α0,都有α0=0,因此,该集合是线性相关的,实际上,所有包含0向量的集合都是线性相关的。
  • 如果集合中只包括单个非零向量α0,只有α=0s时,才有aα=0成立,因此,该集合是线性相关的。
  • 给定向量α,如果存在标量a1,a2,ak,使得
    α=a1α1+a2α2++akαk

    那么称向量αα1,α2,αk的线性组合。
  • 命题2.1向量集α1,α2,αk是线性相关的,当且仅当集合中有一个向量可以表示为其他向量的线性组合。
  • ν表示为Rn的一个子集,如果ν在向量的加法和运算以及标量乘积运算下是封闭的,那么成为νRn的子空间。
  • 假定α1,α2,αkRn中的任意向量,它们所有的线性组合的集合称为α1,α2,αk张成的子空间,记为
    span[α1,α2,αk]=i=1kaiαi:α1,α2,αkRn

    对于向量α,子空间span[α]是由向量aα组成,α为任意的实数。同样α可表示为α1,α2,αk的线性组合,则有
    span[α1,α2,αk,α]=span[α1,α2,αk]
    ,因此,任意向量集合都能够张成一个子空间。
  • :给定子空间V,如果存在线性无关的向量集合α1,α2,αkV使得V=span[α1,α2,αk,α],那么称{α1,α2,αk}是子空间V的一组基。子空间V中的所有基都包含相同数量的向量,这一数量称为V的维数,记为dimV.
  • 命题2.2 如果{α1,α2,αk}V的一组基,那么V中的任意向量α可以唯一地表示为
    α=a1α1+a2α2++akαk

    其中,aiR,i=1,2,k.
  • 矩阵的秩 矩阵A中线性无关列的最大数目成为A的秩,记为rankA.可以看出rankA正是span[α1,α2,αk,α]的维数。
  • 命题2.3 以下运算,矩阵A的秩保持不变:
    1、矩阵A的某个(些)列乘以非零标量
    2、矩阵内部交换次序
    3、在矩阵中加入一列,该列是其他列的线性组合。
  • 定理2.1方程组Ax=b有解,当且仅当
    rankA=rank[A,b]

    一个非奇异(可逆)的矩阵是一个行列式非零的方阵。假定A是n×n的方阵,A 是非奇异的,当且仅当存在n×n方阵B,使得
    AB=BA=In
    其中In是单位矩阵
  • 定理2.2 考虑方程Ax=b,其中ARm×nrankA=m.可以通过n-m个未知数富裕任意值求解其他未知数来获取Ax=b的解。
  • 对于x,yRn,定义欧式内积
    <x,y>=i=1nxiyi=xTy

    内积是一个实值函数<>Rn×RnR,具有如下性质:
    1、非负性:<x,x>0 当且仅当x=0时,<x,x>=0
    2、对称性:<x,y>=<y,x>
    3、可加性:<x+y,z>=<x,z>+<y,z>
    4、齐次性:对于任意的rR,总有<rx,y>=r<y,x>
  • 特征值与特征向量
    这里写图片描述

设A,B两个n阶矩阵,如果存在n 阶可逆矩阵C使得CTAC=B,则称A与B合同,若P1AP=B则称A与B相似。如果C是正交矩阵CT=C1,则B与A既相似又合同。

  • 反身性:对于任意方阵A,都对自身合同
  • 对称性
  • 传递性
    这里写图片描述
    这里写图片描述
    这里写图片描述
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

最优化导论1

证明方法A⇒BA\Rightarrow B就是组合命题“(非A)或B”,经常读作“A当且仅当B”,“如果A,则B”、“A是B的充分条件”或者“B是A的必要条件”。可以将两个命题组合成等价命题的形式A⇐...

支持向量机通俗导论(理解SVM的三层境界)

<blockquote style="border-bottom: medium none; border-left: medium non

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

最优化问题学习笔记1-对偶理论

什么是对偶问题?       每一个线性规划问题都存在一个与其对偶的问题,在求出一个问题解的同时,也给出了另一个问题的解。 为什么研究对偶理论?       当对偶问题比原始问题有较少约束时,求...

Karush-Kuhn-Tucker 最优化条件 (KKT 条件,SVM中需要到)--SVM学习1

Karush-Kuhn-Tucker 最优化条件 (KKT 条件) 一般地,一个最优化数学模型能够表示成下列标准形式: 所谓 Karush-Kuhn-Tucker 最优化条件,就是指上式的最小点 x* 必须满足下面的条件: KKT最优化条件是Ka...&lt;br /&gt...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)