KMP算法详解

原创 2015年07月10日 16:15:25

在做题时,碰到了一个在A串中寻找B串的题目,如果在A串中可以找到B串,则返回B串首次出现时的下标,否则返回-1。一开始,我用的是最Naive的方法,时间复杂度为O(MN),其中M为A串长度,N为B串长度。代码如下:

    int Index(string s, string t, int pos) { // 从pos开始搜索
        int i = pos, j = 0, sl = (int)s.length(), tl = (int)t.length();
        while (i<sl && j<tl) {
            if (s[i] == t[j]) { // 继续比较后面的字符
                i++;
                j++;
            } else { // i和j回退,重新进行比较
                i = i-j+1;
                j=0;
            }
        }
        if (j == tl) {
            return i-tl;
        } else {
            return -1;
        }
    }
其实还有更好的方法,那就是KMP算法。KMP算法的时间复杂度为O(M+N),空间复杂度为O(N)。KMP的核心思想请参考严蔚敏《数据结构》第80页。程序代码如下:

    void get_next(string& t, int next[]) {
        int i = 0, tl = (int)t.length(), j = -1;
        next[0] = -1; // next[0]=-1的意思是,下一步应该拿i+1与j=0相比。
        while (i < tl) {
            if (j == -1 || t[j] == t[i]) {
                j++;
                i++;
                next[i] = j;
            } else {
                j = next[j];
            }
        }
    }
    int Index(string s, string t, int pos) {
        int i = pos, j = 0, sl = (int)s.length(), tl = (int)t.length();
        int next[tl];
        get_next(t, next); // 得到next数组
        while (i<sl && j<tl) {
            if (j == -1 || s[i] == t[j]) { // 继续进行比较,若j == -1,则说明j第一个字符就与i不相等,则j第一个字符与i+1相比
                i++;
                j++;
            } else {
                j=next[j]; // 如果j和i不相等,则j回退到next[j]再与i进行比较
            }
        }
        if (j == tl) {
            return i-tl;
        } else {
            return -1;
        }
    }

对于get_next函数,还有可以优化的地方。如下:

    void get_next(string& t, int next[]) {
        int i = 0, tl = (int)t.length(), j = -1;
        next[0] = -1; // next[0]
        while (i < tl) {
            if (j == -1 || t[j] == t[i]) {
                j++;
                i++;
                if (t[i] != t[j]) { // 如果t[i]和t[next[j]]不相等,则next[i]=j,否则next[i]=next[j]
                    next[i] = j;
                } else {
                    next[i] = next[j];
                }
            } else {
                j = next[j];
            }
        }
    }


从DFA角度理解KMP算法

KMP 算法KMP(Knuth-Morris-Pratt)算法在字符串查找中是很高效的一种算法,假设文本字符串长度为n,模式字符串长度为m,则时间复杂度为O(m+n),最坏情况下能提供线性时间运行时间...
  • xiangshimoni
  • xiangshimoni
  • 2015年05月03日 17:18
  • 4935

KMP算法(Python实现)

BF算法的时间复杂度:在最坏的情况下,BF算法要将目标串的每一个字符同模式串进行比较一遍,假定目标串长度为m,模式串长度为n,总的时间复杂度为O(m*n)。而对于KMP算法,进行比较的时间复杂度为O(...
  • u010189459
  • u010189459
  • 2014年06月11日 16:33
  • 2677

KMP算法及next数组详解

最近整理笔记时,突然翻出几年前理解起来困难无比的看毛片(KMP)算法,笔记中详述了搜索过程,图文并茂,然而在最最重要的next数组部分却是一带而过,于是找出当年的教材,也只是写了getnext()函数...
  • u012043391
  • u012043391
  • 2016年10月14日 18:21
  • 2262

kmp算法详解及练习

  • 2011年03月08日 00:23
  • 209KB
  • 下载

KMP算法详解

  • 2017年03月23日 21:18
  • 577KB
  • 下载

KMP算法详解

  • 2013年12月03日 00:43
  • 1.1MB
  • 下载

字符串模式匹配KMP算法详解.doc

  • 2012年05月24日 13:15
  • 211KB
  • 下载

kmp算法详解

  • 2015年04月15日 18:47
  • 115KB
  • 下载

模式匹配的KMP算法详解.

  • 2011年07月08日 08:28
  • 34KB
  • 下载

kmp算法详解

  • 2012年03月20日 15:06
  • 26KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:KMP算法详解
举报原因:
原因补充:

(最多只允许输入30个字)