# 机器学习笔记2——参数学习、非参数学习、局部加权线性回归、线性回归的概率解释、logistics回归

  • 参数学习:有固定数目的参数,模型学习之后会有一个永久的参数,这个参数在后面的预测中可以直接使用,不需要再需要数据

  • 非参数学习:参数数目会随着训练数据规模线性增长。

  • 局部加权线性回归,使用局部的数据进行回归

假设要在第i个样本附近回归, x(i)

找到θ,使得 12mi=1w(i)(y(i)θTx(i))2
其中 w(i)=e(x(i)x)22
这意味着,当x接近于 x(i) 时, w(i) 接近于1,反之,当x远离于 x(i) 时, w(i) 接近于0

  • 线性回归的概率解释
    样本:( x(i),y(i) ),第i个样本,总共m个样本
    hθ(x(i)) 表示第i个样本的预测值
    y(i)=θTx(i)+ε(i)
    假设 ε(i) N(0,σ2) ,且符合独立同分布 iid.
    P(ε(i))=12πσeε(i)22σ2

所以, P(y(i)|x(i);θ)=12πσey(i)θTx(i)22σ2 N(θTx(i),σ2)
;表示频率学派观点,θ不是随机变量,读作:以θ为参数的概率…
,表示贝叶斯学派观点,θ是随机变量
似然函数 L(θ)=P( Y|X;θ )=Πmi=1P(y(i)|x(i);θ)
l(θ)=logL(θ)
最大似然:选取θ使得 L(θ) 最大,即 l(θ) 最大
l(θ)=mlog12πσ+mi=1y(i)θTx(i)22σ2
y(i)θTx(i)22σ2=J(θ)

logistic 回归
分类算法
假设 y{0,1} ,我们选取回归的函数 hθ(x)[0,1]
选择 hθ(x)=g(θTx)=11+eθTx
g(z)=11+ez 叫做sigmoid函数或者 logistics函数

logistic函数

P(y=1|x;θ)=hθ(x)
P(y=0|x;θ)=1hθ(x)
所以 P(y|x;θ)=hθ(x)y(1hθ(x))1y
似然函数 L(θ)=P( y|x ;θ)=ΠP(y(i)|x(i);θ)=Πhθ(x(i))y(i)(1hθ(x(i)))1y(i)

l(θ)=logL(θ)
梯度上升法: θ=θ+αθl(θ)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性回归一种常见的机器学习算法,它用于预测一个连续的因变量(或称为响应变量)Y,与一个或多个自变量(或称为预测变量)X 相关的值。在线性回归中,我们假设因变量与自变量之间存在线性关系,并通过最小化残差平方和来拟合数据。 一般来说,我们采用梯度下降法(Gradient Descent)来优化线性回归模型的参数,使得残差平方和最小化。梯度下降法是一种基于迭代的优化方法,它通过不断调整参数使得目标函数不断逼近最小值。具体来说,梯度下降法的步骤如下: 1. 初始化模型参数,如权重向量 w 和偏置 b。 2. 计算目标函数 J(w,b) 的梯度,即对每个参数求偏导数。 3. 更新模型参数,即按照梯度的反方向调整参数,使得目标函数下降。 4. 重复步骤 2 和 3,直到达到设定的停止条件。 在梯度下降法中,更新参数的公式为: w := w - α * ∂J(w,b)/∂w b := b - α * ∂J(w,b)/∂b 其中,α 表示学习率,用来控制每次更新参数的步长。学习率过大会导致震荡,学习率过小会导致收敛速度缓慢。 对于线性回归问题,我们可以采用批量梯度下降法(Batch Gradient Descent)来更新参数。具体来说,批量梯度下降法每次使用全部的样本来计算梯度,然后更新参数。这样做的好处是可以保证每次更新的方向是整体最优的,但是计算量较大,不适合大规模数据集。 除了批量梯度下降法,还有随机梯度下降法(Stochastic Gradient Descent)和小批量梯度下降法(Mini-batch Gradient Descent)。随机梯度下降法每次只使用一个样本来计算梯度和更新参数,计算量较小,但是更新方向不一定最优。小批量梯度下降法每次使用一部分样本来计算梯度和更新参数,权衡了计算量和更新方向的优劣。 在实际应用中,我们可以根据数据集的大小和计算资源的限制来选择合适的梯度下降法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值