[561]TensorFlow练习1: 对评论进行分类

TensorFlow是谷歌2015年开源的一个深度学习库,到现在正好一年。和TensorFlow类似的库还有Caffe、Theano、MXNet、Torch。但是论火爆程度,TensorFlow当之无愧,短短一年就在Github就收获了4万+颗星,把前面几个库获得的star加起来也不敌TensorFlow。

TensorFlow使用C++开发,并提供了Python等语言的封装。如命名一样,TensorFlow为张量从图一端流动到另一端的计算过程,可以把张量看作矩阵(矩阵rank为2,Tensor的rank更高)。TensorFlow并不是一个抽象程度特别高的库,但是它实现了所有深度学习所需的函数。貌似有几个高度抽象的库使用TensorFlow做为后端。

TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,它可在小到手机、大到数千台服务器上运行。

本帖展示怎么使用TensorFlow实现文本的简单分类,判断评论是正面的还是负面的。

使用的数据集

我本想使用Python爬一些淘宝评论,但是脚本做到一半卡壳了,搞得火起。然后我上网找现成的数据,只找到了英文的电影评论数据(其实不管是英文还是中文,处理逻辑都一样)。

TensorFlow练习1: 对评论进行分类

由于处理的是字符串,我们首先要想方法把字符串转换为向量/数字表示。一种解决方法是可以把单词映射为数字ID。

第二个问题是每行评论字数不同,而神经网络需要一致的输入(其实有些神经网络不需要,至少本帖需要),这可以使用词汇表解决。

代码部分

安装nltk(自然语言工具库 Natural Language Toolkit

$  pip install nltk

下载nltk数据:

$ python
Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016, 10:47:25) 
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import nltk
>>> nltk.download()

ntlk有详细安装文档。

测试nltk安装:

>>> from nltk.corpus import brown
>>> brown.words()
['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', ...]

Python代码:

# -*- coding:utf-8 -*-
"""
对评论进行分类
"""
import numpy as np
import random,pickle
from collections import Counter
import nltk
from nltk.tokenize import word_tokenize
from nltk.stem import WordNetLemmatizer

# 安装的tensorflow是1.x(1.9.0)版本的下面代码引入,本代码使用1.x版本
# import tensorflow as tf
# 安装的tensorflow是2.x版本的,加入下面代码解决报错
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()


"""
>>> a="I'm super man"
>>> word_tokenize(a)
['I', "'m", 'super', 'man']

词形还原(lemmatizer),即把一个任何形式的英语单词还原到一般形式,与词根还原不同(stemmer),
后者是抽取一个单词的词根。
>>> lemmatizer = WordNetLemmatizer()
>>> lemmatizer.lemmatize('words')
'word'
"""

# 创建词汇表
def create_lexicon(pos_file, neg_file):
    lex = []
    # 读取文件
    def process_file(file):
        with open(file, 'r') as f:
            lex = []
            lines = f.readlines()
            # print(lines)
            for line in lines:
                words = word_tokenize(line.lower())
                lex += words
            return lex

    lex += process_file(pos_file)
    lex += process_file(neg_file)
    # print(len(lex))
    lemmatizer = WordNetLemmatizer()
    lex = [lemmatizer.lemmatize(word) for word in lex]  # 词形还原 (cats->cat)

    word_count = Counter(lex)
    # print(word_count)
    # {'.': 13944, ',': 10536, 'the': 10120, 'a': 9444, 'and': 7108, 'of': 6624, 'it': 4748, 'to': 3940......}
    # 去掉一些常用词,像the,a and等等,和一些不常用词; 这些词对判断一个评论是正面还是负面没有做任何贡献
    lex = []
    for word in word_count:
        if word_count[word] < 2000 and word_count[word] > 20:  # 这写死了,好像能用百分比
            lex.append(word)  # 齐普夫定律-使用Python验证文本的Zipf分布 http://blog.topspeedsnail.com/archives/9546
    return lex

# 把每条评论转换为向量, 转换原理:
# 假设lex为['woman', 'great', 'feel', 'actually', 'looking', 'latest', 'seen', 'is'] 当然实际上要大的多
# 评论'i think this movie is great' 转换为 [0,1,0,0,0,0,0,1], 把评论中出现的字在lex中标记,出现过的标记为1,其余标记为0
def normalize_dataset(lex):
    dataset = []
    # lex:词汇表;review:评论;clf:评论对应的分类,[0,1]代表负面评论 [1,0]代表正面评论
    def string_to_vector(lex, review, clf):
        words = word_tokenize(line.lower())
        lemmatizer = WordNetLemmatizer()
        words = [lemmatizer.lemmatize(word) for word in words]
        features = np.zeros(len(lex))
        for word in words:
            if word in lex:
                features[lex.index(word)] = 1  # 一个句子中某个词可能出现两次,可以用+=1,其实区别不大
        return [features, clf]

    with open(pos_file, 'r') as f:
        lines = f.readlines()
        for line in lines:
            one_sample = string_to_vector(lex, line, [1, 0])  # [array([ 0.,  1.,  0., ...,  0.,  0.,  0.]), [1,0]]
            dataset.append(one_sample)
    with open(neg_file, 'r') as f:
        lines = f.readlines()
        for line in lines:
            one_sample = string_to_vector(lex, line, [0, 1])  # [array([ 0.,  0.,  0., ...,  0.,  0.,  0.]), [0,1]]]
            dataset.append(one_sample)
    # print(len(dataset))
    return dataset

# 定义待训练的神经网络
def neural_network(data):
    # 定义第一层"神经元"的权重和biases
    layer_1_w_b = {'w_': tf.Variable(tf.random_normal([n_input_layer, n_layer_1])),
                   'b_': tf.Variable(tf.random_normal([n_layer_1]))}
    # 定义第二层"神经元"的权重和biases
    layer_2_w_b = {'w_': tf.Variable(tf.random_normal([n_layer_1, n_layer_2])),
                   'b_': tf.Variable(tf.random_normal([n_layer_2]))}
    # 定义输出层"神经元"的权重和biases
    layer_output_w_b = {'w_': tf.Variable(tf.random_normal([n_layer_2, n_output_layer])),
                        'b_': tf.Variable(tf.random_normal([n_output_layer]))}
    # w·x+b
    layer_1 = tf.add(tf.matmul(data, layer_1_w_b['w_']), layer_1_w_b['b_'])
    layer_1 = tf.nn.relu(layer_1)  # 激活函数
    layer_2 = tf.add(tf.matmul(layer_1, layer_2_w_b['w_']), layer_2_w_b['b_'])
    layer_2 = tf.nn.relu(layer_2)  # 激活函数
    layer_output = tf.add(tf.matmul(layer_2, layer_output_w_b['w_']), layer_output_w_b['b_'])

    return layer_output

# 使用数据训练神经网络
def train_neural_network(X, Y):
    predict = neural_network(X)
    cost_func = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=predict,labels=Y))
    optimizer = tf.train.AdamOptimizer().minimize(cost_func)  # learning rate 默认 0.001

    epochs = 13
    with tf.Session() as session:
        # session.run(tf.initialize_all_variables())
        session.run(tf.global_variables_initializer())
        epoch_loss = 0
        i = 0
        random.shuffle(train_dataset)
        train_x = dataset[:, 0]
        train_y = dataset[:, 1]
        for epoch in range(epochs):
            while i < len(train_x):
                start = i
                end = i + batch_size
                batch_x = train_x[start:end]
                batch_y = train_y[start:end]
                _, c = session.run([optimizer, cost_func], feed_dict={X: list(batch_x), Y: list(batch_y)})
                epoch_loss += c
                i += batch_size
            print(epoch, ' : ', epoch_loss)
        text_x = test_dataset[:, 0]
        text_y = test_dataset[:, 1]
        correct = tf.equal(tf.argmax(predict, 1), tf.argmax(Y, 1))
        accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
        print('准确率: ', accuracy.eval({X: list(text_x), Y: list(text_y)}))


if __name__=='__main__':
    pos_file = 'pos.txt'
    neg_file = 'neg.txt'
    # lex里保存了文本中出现过的单词。
    lex = create_lexicon(pos_file, neg_file)

    dataset = normalize_dataset(lex)
    random.shuffle(dataset)
    #把整理好的数据保存到文件,方便使用。到此完成了数据的整理工作
    # with open('save.pickle', 'wb') as f:
    # 	pickle.dump(dataset, f)
    # 取样本中的10%做为测试数据
    test_size = int(len(dataset) * 0.1)
    dataset = np.array(dataset)
    train_dataset = dataset[:-test_size]
    test_dataset = dataset[-test_size:]

    # Feed-Forward Neural Network
    # 定义每个层有多少'神经元''
    n_input_layer = len(lex)  # 输入层
    n_layer_1 = 1000  # hide layer
    n_layer_2 = 1000  # hide layer(隐藏层)听着很神秘,其实就是除输入输出层外的中间层
    n_output_layer = 2  # 输出层
    # 每次使用50条数据进行训练
    batch_size = 50
    X = tf.placeholder('float', [None, len(train_dataset[0][0])])
    # [None, len(train_x)]代表数据数据的高和宽(矩阵),好处是如果数据不符合宽高,tensorflow会报错,不指定也可以。
    Y = tf.placeholder('float')
    train_neural_network(X, Y)
    

执行结果:

2019-03-13 16:05:31.299662: I T:\src\github\tensorflow\tensorflow\core\platform\cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
0  :  73450.83477020264
1  :  73450.83477020264
2  :  73450.83477020264
3  :  73450.83477020264
4  :  73450.83477020264
5  :  73450.83477020264
6  :  73450.83477020264
7  :  73450.83477020264
8  :  73450.83477020264
9  :  73450.83477020264
10  :  73450.83477020264
11  :  73450.83477020264
12  :  73450.83477020264
准确率:  0.6726079

准确率才60%多,比瞎猜强点有限。

那么问题出在哪呢?

准确率低主要是因为数据量太小,同样的模型,如果使用超大数据训练,准确率会有显著的提升。

下文我会使用同样的模型,但是数据量要比本文使用的多得多,看看准确率能提高多少。由于本文使用的神经网络模型(feed-forward)过于简单,使用大数据也不一定有质的提升,尤其是涉及到自然语言处理。

参考:http://blog.topspeedsnail.com/archives/10399

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周小董

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值