关闭

图像金字塔总结

162人阅读 评论(0) 收藏 举报
分类:
本文转载自:http://blog.csdn.net/dcrmg/article/details/52561656    

一、 图像金字塔


图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像。把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列像素(尺寸)逐渐降低的图像,一直到金字塔的顶部只包含一个像素点的图像,这就构成了传统意义上的图像金字塔。





获得图像金字塔一般包括二个步骤:

1. 利用低通滤波器平滑图像 

2. 对平滑图像进行抽样(采样)

有两种采样方式——上采样(分辨率逐级升高)和下采样(分辨率逐级降低)


上采样:




下采样:




二、高斯金字塔


高斯金字塔式在Sift算子中提出来的概念,首先高斯金字塔并不是一个金字塔,而是有很多组(Octave)金字塔构成,并且每组金字塔都包含若干层(Interval)。

高斯金字塔构建过程:

1. 先将原图像扩大一倍之后作为高斯金字塔的第1组第1层,将第1组第1层图像经高斯卷积(其实就是高斯平滑或称高斯滤波)之后作为第1组金字塔的第2层,高斯卷积函数为:



对于参数σ,在Sift算子中取的是固定值1.6。

2. 将σ乘以一个比例系数k,等到一个新的平滑因子σ=k*σ,用它来平滑第1组第2层图像,结果图像作为第3层。

3. 如此这般重复,最后得到L层图像,在同一组中,每一层图像的尺寸都是一样的,只是平滑系数不一样。它们对应的平滑系数分别为:0,σ,kσ,k^2σ,k^3σ……k^(L-2)σ。

4.  将第1组倒数第三层图像作比例因子为2的降采样,得到的图像作为第2组的第1层,然后对第2组的第1层图像做平滑因子为σ的高斯平滑,得到第2组的第2层,就像步骤2中一样,如此得到第2组的L层图像,同组内它们的尺寸是一样的,对应的平滑系数分别为:0,σ,kσ,k^2σ,k^3σ……k^(L-2)σ。但是在尺寸方面第2组是第1组图像的一半。

这样反复执行,就可以得到一共O组,每组L层,共计O*L个图像,这些图像一起就构成了高斯金字塔,结构如下:




在同一组内,不同层图像的尺寸是一样的,后一层图像的高斯平滑因子σ是前一层图像平滑因子的k倍;

在不同组内,后一组第一个图像是前一组倒数第三个图像的二分之一采样,图像大小是前一组的一半;


高斯金字塔图像效果如下,分别是第1组的4层和第2组的4层:


        



三、 尺度空间



图像的尺度空间解决的问题是如何对图像在所有尺度下描述的问题。

在高斯金字塔中一共生成O组L层不同尺度的图像,这两个量合起来(O,L)就构成了高斯金字塔的尺度空间,也就是说以高斯金字塔的组O作为二维坐标系的一个坐标,不同层L作为另一个坐标,则给定的一组坐标(O,L)就可以唯一确定高斯金字塔中的一幅图像。

尺度空间的形象表述:



上图中尺度空间中k前的系数n表示的是第一组图像尺寸是当前组图像尺寸的n倍。



四、 DOG金字塔


差分金字塔,DOG(Difference of Gaussian)金字塔是在高斯金字塔的基础上构建起来的,其实生成高斯金字塔的目的就是为了构建DOG金字塔。

DOG金字塔的第1组第1层是由高斯金字塔的第1组第2层减第1组第1层得到的。以此类推,逐组逐层生成每一个差分图像,所有差分图像构成差分金字塔。概括为DOG金字塔的第o组第l层图像是有高斯金字塔的第o组第l+1层减第o组第l层得到的。

DOG金字塔的构建可以用下图描述:




每一组在层数上,DOG金字塔比高斯金字塔少一层。后续Sift特征点的提取都是在DOG金字塔上进行的。

DOG金字塔的显示效果如下:




这些长得黑乎乎的图像就是差分金字塔的实际显示效果,只在第1组第1层差分图像上模糊可以看到一个轮廓。但其实这里边包含了大量特征点信息,只是我们人眼已经分辨不出来了。

下边对这些DOG图像进行归一化,可有很明显的看到差分图像所蕴含的特征,并且有一些特征是在不同模糊程度、不同尺度下都存在的,这些特征正是Sift所要提取的“稳定”特征:




附带说一下后面的归一化,在图像处理中是很常见的操作,主要原因是亮度不均匀,显然偏暗。因此我们希望灰度值分布较为均匀些,因此我们可以将当前的像素灰度值缩放到[0,255]即可。具体可参考《MATLAB实现图像灰度归一化


参考资料:
1. 深度学习目标检测中的图像金字塔 pyramid

2. 图像金字塔



0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔总结

OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔总结
  • jacke121
  • jacke121
  • 2017-01-17 10:37
  • 1597

opencv用金字塔cvPyrSegmentation实现图像分割

用金字塔实现图像分割。图像分割需要先建立一个图像金字塔,然后在Gi的像素和Gi+1的像素直接依照对应关系,建立起"父-子"关系,通过这种方式,快速初始分割可以先在金字塔高层的低分辨率图像上完成,然后逐...
  • gdut2015go
  • gdut2015go
  • 2015-06-05 20:43
  • 1819

【OpenCV】图像处理(四)图像金字塔

【图像金字塔】图像金字塔这个词,我们经常在很多地方可以看到。它是图像多尺度表达的一种,最主要的是用于图像的分割。同时,图像金字塔也被广泛用于各种视觉应用中。 图像金字塔是一个图像集合,集合中所有的图...
  • w12345_ww
  • w12345_ww
  • 2015-05-19 15:34
  • 1091

图像处理之高斯金字塔

一:图像金字塔基本操作 对一张图像不断的模糊之后向下采样,得到不同分辨率的图像,同时每次得到的 新的图像宽与高是原来图像的1/2, 最常见就是基于高斯的模糊之后采样,得到的 一系列图像称为高斯金...
  • jia20003
  • jia20003
  • 2013-06-18 06:58
  • 40950

【OpenCV入门教程之十三】OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放

这篇文章里,我们将一起探讨图像金字塔的一些基本概念,如何使用OpenCV函数 pyrUp 和 pyrDown 对图像进行向上和向下采样,以及了解了专门用于缩放图像尺寸的resize函数的用法。此博文一...
  • zhmxy555
  • zhmxy555
  • 2014-05-18 18:58
  • 55389

图像处理中的高斯金字塔和拉普拉斯金字塔

在接触高斯金字塔的时候,对于它的作用疑惑的时候有人这么跟我讲..它就是模拟人类的视觉,近处的东西看着大,并且能够看到东西的细节所在,当把这东西从眼前拿到几米外,虽然还是能看到东西,但也只能窥见它的轮廓...
  • xbcReal
  • xbcReal
  • 2016-09-22 23:29
  • 5256

图像算法之十:图像金字塔

一、基本原理       图像金字塔常用作多分辨率模型。视频图像的多分辨率模型是视频图像处理的重要方法。 图像金字塔包括高斯金字塔和拉普拉斯金字塔两种实现形式。 1、高斯金字塔:   高斯金字...
  • SoaringLee_fighting
  • SoaringLee_fighting
  • 2016-10-06 16:48
  • 2527

SIFT中的尺度空间和传统图像金字塔

SIFT解析(一)建立高斯金字塔 SIFT(Scale-Invariant Feature Transform,尺度不变特征转换)在目标识别、图像配准领域具有广泛的应用,下 面按照SIFT...
  • Losteng
  • Losteng
  • 2016-03-06 20:55
  • 4381

空间金字塔方法表示图像

注:本学习笔记是自己的理解,如有错误的地方,请大家指正,共同学习进步。 本文学习自CVPR论文《Discriminative Spatial Pyramid》、《Discriminative S...
  • mao_kun
  • mao_kun
  • 2016-01-17 22:20
  • 3167

【OpenCV】图像金字塔详解及编程实现

图像金字塔被广泛用于各种视觉应用中。图像金字塔是一个图像集合,集合中所有的图像都源于同一个原始图像,而且是通过对原始图像连续降采样获得,直到达到某个中止条件才停止降采样。有两种类型的图像金字塔常常出现...
  • u010418035
  • u010418035
  • 2015-04-17 17:09
  • 1575
    个人资料
    • 访问:285088次
    • 积分:4126
    • 等级:
    • 排名:第8660名
    • 原创:117篇
    • 转载:82篇
    • 译文:8篇
    • 评论:106条
    个人网站
    最新评论