这个系列是为了应对找工作面试时面试官问的算法问题,所以只是也谢算法的简要介绍,后期会陆续补充关于此算法的常见面试的问题!
AdaBoost是一种迭代算法,针对同一训练集训练处不同的分类器(弱分类器),将前面训练的分类器以某种方式组合起来,组合成一个强分类器。算法是通过改变数据的分布来实现的。每次训练分类器是参考
1、某样本在上个分类器的分类过程中是否被正确分类
2、上个分类器的准确率
AdaBoost是Adaptive Boosting的缩写,Adaptive在于:前一个分类器分错的样本会得到增强,加强后的全体样本会用于下一次分类器的训练,每一轮加入一个新的弱分类器,知道达到某个预定的足够小的的错误率或达到预定的最大迭代次数。

本文介绍了AdaBoost算法的核心概念,它通过迭代训练不同的弱分类器并结合形成强分类器。每轮迭代中,错误分类的样本权重增加,用于下一轮训练。算法的关键步骤包括初始化权重、训练弱分类器、调整分类器权重和更新样本权重。 AdaBoost的主要挑战在于选择合适的弱分类器。
最低0.47元/天 解锁文章
317

被折叠的 条评论
为什么被折叠?



