【BZOJ 1257】[CQOI2007]余数之和sum

本文介绍了一种计算从k%1到k%n所有余数之和的方法,通过数学推导简化了原始问题,并提供了一个高效的算法实现。适用于1≤n,k≤10^9的大规模输入。

题意

给出正整数nk,计算j(n,k)=kmod1+kmod2+kmod3++kmodn的值,其中kmodi表示k除以i的余数。
1n,k109

思路

ans=i=1nk%i=i=1nkki×i=nki=1nki×i

因为后面一项的前缀和可以维护,所以总的复杂度是O(n)

代码

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
long long res, n, k, last;
int main(){
    scanf("%lld%lld", &n, &k);
    res += n*k;
    n = min(n, k);
    for(long long i = 1; i <= n; i = last+1){
        last = min(n, k/(k/i));
        res -= (k/i)*(i+last)*(last-i+1)/2;
    }
    printf("%lld", res); 
    return 0;
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值