题意
给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7
1<=n ,k<=10^9
分析
显然x mod i=x-(x/i)*i
我们就把(x/i)相同的x放到一起用分块计算即可。
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
int main()
{
int n,k;
scanf("%d%d",&n,&k);
LL ans=(LL)n*k;
for (int i=1,last;i<=min(n,k);i=last+1)
{
last=min(k/(k/i),n);
ans-=(LL)(k/i)*(i+last)*(last-i+1)/2;
}
cout<<ans;
return 0;
}