bzoj 1257: [CQOI2007]余数之和sum 数学

题意

给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7
1<=n ,k<=10^9

分析

显然x mod i=x-(x/i)*i
我们就把(x/i)相同的x放到一起用分块计算即可。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;

int main()
{
    int n,k;
    scanf("%d%d",&n,&k);
    LL ans=(LL)n*k;
    for (int i=1,last;i<=min(n,k);i=last+1)
    {
        last=min(k/(k/i),n);
        ans-=(LL)(k/i)*(i+last)*(last-i+1)/2;
    }
    cout<<ans;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值