【除法分块】BZOJ1257 [CQOI2007]余数之和sum

题面在这里

把答案的形式写出来就是这样的:

i=1mnnii

nmi=1mnii

可以发现,随着i的增长, ni 是可以分块的
而且最多有 O(n) 级别的块数

示例程序:

#include<cstdio>
#include<cmath>
#define LL long long

LL n,nn,m,ans,a[3162300];
int main(){
    scanf("%lld%lld",&m,&n);nn=sqrt(n);
    ans=n*(m);
    for (int k=1;k<=nn;k++){
        a[k]=n/k;
        LL l=n/(k+1)+1,r=n/k;
        if (l>m) continue;
        if (r>m) r=m;
        ans-=(k*((l+r)*(r-l+1)/2));
    }
    for (int i=1;i<nn;i++){
        LL k=a[i],l=n/(k+1)+1,r=n/k;
        if (l>m) continue;
        if (r>m) r=m;
        ans-=(k*((l+r)*(r-l+1)/2));
    }
    if (n/nn!=nn){
        LL k=a[nn],l=n/(k+1)+1,r=n/k;
        ans-=(k*((l+r)*(r-l+1)/2));
    }
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值