使用Apriori算法和FP-growth算法进行关联分析

1. 关联分析

关联分析是在大规模数据集中寻找有趣关系的任务。这些关系可以有两种形式:

  • 频繁项集
  • 关联规则

频繁项集(frequent item sets)是经常出现在一块儿的物品的集合,关联规则(association rules)暗示两种物品之间可能存在很强的关系。

下面用一个例子来说明这两种概念:图1给出了某个杂货店的交易清单。

交易号码

商品

0

豆奶,莴苣

1

莴苣,尿布,葡萄酒,甜菜

2

豆奶,尿布,葡萄酒,橙汁

3

莴苣,豆奶,尿布,葡萄酒

4

莴苣,豆奶,尿布,橙汁

图1 某杂货店交易清单

频繁项集是指那些经常出现在一起的商品集合,图中的集合{葡萄酒,尿布,豆奶}就是频繁项集的一个例子。从这个数据集中也可以找到诸如尿布->葡萄酒的关联规则,即如果有人买了尿布,那么他很可能也会买葡萄酒。

我们用支持度和可信度来度量这些有趣的关系。一个项集的支持度(support)被定义数据集中包含该项集的记录所占的比例。如上图中,{豆奶}的支持度为4/5,{豆奶,尿布}的支持度为3/5。支持度是针对项集来说的,因此可以定义一个最小支持度,而只保留满足最小值尺度的项集。

可信度置信度(confidence)是针对关联规则来定义的。规则{尿布}➞{啤酒}的可信度被定义为"支持度({尿布,啤酒})/支持度({尿布})",由于{尿布,啤酒}的支持度为3/5,尿布的支持度为4/5,所以"尿布➞啤酒"的可信度为3/4。这意味着对于包含"尿布"的所有记录,我们的规则对其中75%的记录都适用。

2. Apriori原理

假设我们有一家经营着4种商品(商品0,商品1,商品2和商品3)的杂货店,2图显示了所有商品之间所有的可能组合:

图2 集合{0,1,2,3,4}中所有可能的项集组合

对于单个项集的支持度,我们可以通过遍历每条记录并检查该记录是否包含该项集来计算。对于包含N中物品的数据集共有\( 2^N-1 \)种项集组合,重复上述计算过程是不现实的。

研究人员发现一种所谓的Apriori原理,可以帮助我们减少计算量。Apriori原理是说如果某个项集是频繁的,那么它的所有子集也是频繁的。更常用的是它的逆否命题,即如果一个项集是非频繁的,那么它的所有超集也是非频繁的

在图3中,已知阴影项集{2,3}是非频繁的。利用这个知识,我们就知道项集{0,2,3},{1,2,3}以及{0,1,2,3}也是非频繁的。也就是说,一旦计算出了{2,3}的支持度,知道它是非频繁的后,就可以紧接着排除{0,2,3}、{1,2,3}和{0,1,2,3}。

图3 图中给出了所有可能的项集,其中非频繁项集用灰色表示。

3. 使用Apriori算法来发现频繁集

前面提到,关联分析的目标包括两项:发现频繁项集和发现关联规则。首先需要找到频繁项集,然后才能获得关联规则(正如前文所讲,计算关联规则的可信度需要用到频繁项集的支持度)。

Apriori算法是发现频繁项集的一种方法。Apriori算法的两个输入参数分别是最小支持度和数据集。该算法首先会生成所有单个元素的项集列表。接着扫描数据集来查看哪些项集满足最小支持度要求,那些不满足最小支持度的集合会被去掉。然后,对剩下来的集合进行组合以生成包含两个元素的项集。接下来,再重新扫描交易记录,去掉不满足最小支持度的项集。该过程重复进行直到所有项集都被去掉。

3.1 生成候选项集

数据集扫描的伪代码大致如下:

对数据集中的每条交易记录tran:
    对每个候选项集can:
        检查can是否是tran的子集
        如果是,则增加can的计数
对每个候选项集:
    如果其支持度不低于最小值,则保留该项集
返回所有频繁项集列表

下面看一下实际代码,建立一个apriori.py文件并加入一下代码:



其中numpy为程序中需要用到的Python库。



其中C1即为元素个数为1的项集(非频繁项集,因为还没有同最小支持度比较)。map(frozenset, C1)的语义是将C1由Python列表转换为不变集合(frozenset,Python中的数据结构)。



其中D为全部数据集,Ck为大小为k(包含k个元素)的候选项集,minSupport为设定的最小支持度。返回值中retList为在Ck中找出的频繁项集(支持度大于minSupport的),supportData记录各频繁项集的支持度。

retList.insert(0, key)一行将频繁项集插入返回列表的首部。

3.2 完整的Apriori算法

整个Apriori算法的伪代码如下:

当集合中项的个数大于0时:
    构建一个由k个项组成的候选项集的列表(k从1开始)
    计算候选项集的支持度,删除非频繁项集
    构建由k+1项组成的候选项集的列表

程序代码如下:



该函数通过频繁项集列表$ L_k $和项集个数k生成候选项集$ C_{k+1} $。

注意其生成的过程中,首选对每个项集按元素排序,然后每次比较两个项集,只有在前k-1项相同时才将这两项合并。这样做是因为函数并非要两两合并各个集合,那样生成的集合并非都是k+1项的。在限制项数为k+1的前提下,只有在前k-1项相同、最后一项不相同的情况下合并才为所需要的新候选项集。

由于Python中使用下标0表示第一个元素,因此代码中的[:k-2]的实际作用为取列表的前k-1个元素。



该函数为Apriori算法的主函数,按照前述伪代码的逻辑执行。Ck表示项数为k的候选项集,最初的C1通过createC1()函数生成。Lk表示项数为k的频繁项集,supK为其支持度,Lk和supK由scanD()函数通过Ck计算而来。

函数返回的L和supportData为所有的频繁项集及其支持度,因此在每次迭代中都要将所求得的Lk和supK添加到L和supportData中。

代码测试(在Python提示符下输入):


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Apriori算法FP-Growth算法都是用于挖掘频繁项集的经典算法,它们的主要不同在于如何构建候选项集以及如何高效地发现频繁项集。 Apriori算法是一种基于迭代的算法,它通过自底向上的方法生成候选项集,然后逐一扫描数据集来计算每个候选项集的支持度,筛选出满足最小支持度要求的频繁项集。具体来说,Apriori算法通过使用先验知识来减少搜索空间,即假设任何出现频率较低的项集都不可能是频繁项集,从而减少计算的时间和空间复杂度。 相反,FP-Growth算法通过构建一种称为FP树的数据结构来高效地挖掘频繁项集,该算法首先通过扫描数据集来生成一个频繁模式基(即每个项出现的次数),然后构建FP树,其中每个路径表示一种频繁项集。然后使用树的节点链接来高效地查找频繁项集。这种方法避免了产生大量的候选项集,使得FP-Growth算法Apriori算法更加高效。 虽然这两种算法在实现上有很大的不同,但它们的目标都是找到频繁项集。FP-Growth算法可以看作是Apriori算法的优化版本,它通过构建FP树来减少搜索空间,提高算法的效率。因此,两种算法之间有很大的关联,实际应用中可以根据数据集的特点选择使用其中一种算法。 ### 回答2: Apriori算法FP-Growth算法都是数据挖掘领域中频繁项集挖掘的常用方法,它们的目标是从大规模数据集中找出频繁出现的项集。 Apriori算法是一种基于候选生成和验证的方法。它首先生成所有可能的频繁1项集,然后通过逐层迭代生成更高层的候选k项集,并利用候选项集的子集剪枝策略进行验证,判断生成的候选项集是否为频繁项集。Apriori算法的关键思想是利用Apriori原理,即一个项集是频繁项集,则它的所有子集也是频繁项集。 FP-Growth算法是一种基于树结构的方法。它首先构建一个FP树(频繁模式树),通过遍历数据集两次构建树结构。然后基于树结构递归地挖掘频繁项集。FP-Growth算法通过压缩数据集并建立一个树状结构,避免了Apriori算法的候选项集生成和验证的过程,大大提高了挖掘频繁项集的效率。 Apriori算法FP-Growth算法之间存在一定的关联。首先,它们都是用于频繁项集挖掘的算法,旨在找出数据集中经常出现的项集。其次,它们都需要进行两次数据集的遍历,一次用于构建候选项集或FP树,而另一次用于从候选项集或FP树中挖掘出频繁项集。然而,两者的核心不同之处在于,Apriori算法是基于候选项集的生成和验证,而FP-Growth算法则是通过构建FP树来压缩数据集,并基于树状结构进行频繁项集的挖掘。 总的来说,Apriori算法FP-Growth算法都是用于频繁项集挖掘的算法,但Apriori算法需要生成和验证大量的候选项集,而FP-Growth算法通过构建FP树来提高挖掘效率。选用哪种算法取决于具体的应用场景和数据集的规模。 ### 回答3: Apriori算法FP-Growth算法都是用于发现频繁项集的关联规则数据挖掘算法Apriori算法是一种基于候选集和频繁集的生成算法。它的思想是由频繁(k-1)项集生成候选k项集,并通过扫描数据集统计出每个候选集的支持度,然后通过阈值来筛选出频繁项集。Apriori算法的核心操作是逐层生成频繁项集,但它在处理大规模数据时,需要多次扫描数据集,导致效率低下。 FP-Growth算法通过构建一棵FP树来发现频繁项集。它的思想是扫描数据集,统计出每个项的支持度,并将频繁项按照支持度降序排序。然后,利用排序后的频繁项集构建FP树,树的每个节点保存了对应项集的支持度,并通过链接节点的方式将相同项连接起来。根据FP树的特性,可以通过递归操作,从FP树中高效地获取频繁项集。FP-Growth算法只需要扫描数据集两次,避免了多次扫描的问题,因此在大规模数据上的效率明显高于Apriori算法Apriori算法FP-Growth算法之间存在一定的关联。Apriori算法可以看作是FP-Growth算法的变种,两种算法的目标都是发现频繁项集。Apriori算法是基于候选集和频繁集的生成过程,而FP-Growth算法则是基于构建FP树的方式。两种算法在处理小规模数据集上的效率相当,但FP-Growth算法在处理大规模数据时具有明显的优势。此外,FP-Growth算法还可以用于处理稀疏数据集,因为它只存储了频繁项及其支持度,不需要额外的存储空间。在实际应用中,可以根据数据集的大小和特点选择适合的算法来挖掘关联规则

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值