高斯过程回归(Gaussian Process Regression)

高斯过程回归(Gaussian Process Regression, GPR)是一种建立在函数联合正态分布假设上的非参数回归方法。通过定义相似性度量(如高斯核)来构建协方差矩阵,它不仅能提供点估计,还能给出预测值的完整概率分布,适用于贝叶斯优化等场景。GPR在有噪声数据上与岭回归有相似性,并且其核函数选择多样,包括常用的平方指数核。" 115125382,8372583,Node.js实战:理解与实现强缓存与协商缓存,"['javascript', 'node.js', 'http', 'web', 'github']
摘要由CSDN通过智能技术生成
  •  先说一说 高斯过程回归 的 Intuition:

    gaussian1

假设有一个未知的函数f  : R–> R ,

在训练集中,我们有3个点 x_1, x_2, x_3,   以及这3个点对应的结果,f1,f2,f3. (如图) 这三个返回值可以有噪声,也可以没有。我们先假设没有。

so far so good. 没什么惊讶的事情。

高斯过程回归的关键假设是:

给定 一些  X 的值,我们对  Y 建模,并假设 对应的这些 Y 值 服从 联合正态分布!

(更正式的定义后面会说到)

换言之,对于上面的例子,我们的假设是:

gaussian2

一般来说,这个联合正态分布的均值向量不用操心,假设成0 就蛮好。(讲到后面你就知道为什么了)

所以关键是,这个模型的 协方差矩阵K 从哪儿来。

为了解答这个问题,我们进行了另一个重要假设:

如果两个x 比较相似(eg, 离得比较近),那么对应的y值的相关性也就较高。换言之,协方差矩阵是 X 的函数。(而不是y的函数)

具体而言,对于上面的例子,由于x3和x2离得比较近,所以我们假设 f3和f2 的correlation 要比 f3和f1的correlation 高。

话句话说,我们可以假设协方差矩阵的每个元素为对应的两个x值的一个相似性度量:

gaussian3

是的,您说得没错。高斯过程回归Gaussian Process Regression,GPR)是一种非参数模型,它使用高斯过程Gaussian Process,GP)作为先验对数据进行回归分析。GPR模型不需要假设数据的分布形式,而是通过对数据进行高斯过程拟合来进行回归预测。具体来说,GPR模型将数据看作是从一个高斯分布中随机采样得到的无限维向量,可以通过对这个向量的均值函数和协方差函数进行建模来对数据进行预测。 GPR模型具有以下特点: 1. 非参数模型:不需要假设数据的分布形式,可以适应各种数据类型和分布形式。 2. 预测精度高:GPR模型可以对数据进行精确的预测,同时可以对预测结果提供可信度估计。 3. 易于解释:GPR模型可以输出均值函数和协方差函数,可以用于解释预测结果和分析数据特征。 在Python中,可以使用Scikit-learn等机器学习库中的GPR模型进行建模,例如: ```python from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF # 定义高斯过程内核函数 kernel = RBF(length_scale=1.0) # 定义高斯过程回归模型 model = GaussianProcessRegressor(kernel=kernel, alpha=0.1) # 模型训练和预测 model.fit(X_train, y_train) y_pred, y_std = model.predict(X_test, return_std=True) ``` 需要注意的是,在使用GPR模型进行建模时,需要选择合适的高斯过程内核函数和正则化参数,以获得更好的预测效果。同时,GPR模型也需要进行交叉验证等模型选择和优化操作。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值