齐次坐标

原创 2016年08月28日 16:37:28
二维点(x,y)的齐次坐标表示为(hx,hy,h)。由此可以看出,一个向量的齐次表示是不唯一的,齐次坐标的h取不同的值都表示的是同一个点,比如齐次坐标(8,4,2)、(4,2,1)表示的都是二维点(4,2)。
给出点的齐次表达式[X Y H],就可求得其二维笛卡尔坐标,即
[X Y H]→
= [x y 1], 这个过程称为归一化处理。
在几何意义上,相当于把发生在三维空间的变换限制在H=1的平面内。
那么引进齐次坐标有什么必要,它有什么优点呢?
许多图形应用涉及到几何变换,主要包括平移、旋转、缩放。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为p' = m1*p+ m2(注:因为习惯的原因,实际使用时一般使用变化矩阵左乘向量)(m1旋转缩放矩阵, m2为平移矩阵, p为原向量 ,p'为变换后的向量)。引入齐次坐标的目的主要是合并矩阵运算中的乘法和加法,表示为p' = p*M的形式。即它提供了用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系的有效方法。
其次,它可以表示无穷远的点。n+1维的齐次坐标中如果h=0,实际上就表示了n维空间的一个无穷远点。对于齐次坐标(a,b,h),保持a,b不变,|V|=(x1*x1,y1*y1,z1*z1)^1/2的过程就表示了标准坐标系中的一个点沿直线 ax-by=0 逐渐走向无穷远处的过程。
版权声明:本文为博主原创文章,未经博主允许不得转载。

对齐次坐标的初步理解

齐次坐标 最先看到齐次坐标的用处是在每个平面点坐标都多一个分量“1”的前提下用一个统一的矩阵表达平面内刚体的平移与旋转运动,这种点坐标的基本形式是。这比用直观的二维点坐标做等效的变换来得更方便。然而...
  • huangxiaoyuyu
  • huangxiaoyuyu
  • 2015年12月17日 09:52
  • 465

关于齐次坐标的理解(经典)

问题:两条平行线可以相交于一点 在欧氏几何空间,同一平面的两条平行线不能相交,这是我们都熟悉的一种场景。 然而,在透视空间里面,两条平行线可以相交,例如:火车轨道随着我们的视线越来越窄,最后两条平行线...
  • JANESTAR
  • JANESTAR
  • 2015年03月13日 19:17
  • 19436

齐次坐标的意义

首先想像有个绝对不变的坐标系(0,0),记为W,然后以W为参照,建立两个坐标系O1和O2,O1的原点在W的(1,1)处,O2的原点在W的(2,2)处。那么W中的一个点P(x,y)在O1中将变为P(x-...
  • alanxpfeng
  • alanxpfeng
  • 2014年05月27日 18:06
  • 1114

齐次坐标中的w

 曾经接到过一个重量级的游戏公司的电话面试,问我游戏中经常出现变换方程式中的坐标除了x,y,z还有一个w,是什么含意?一时语塞。对方友善的岔开了这个话题。最近正好看一本书,专讲3D数学基础问题的,大概...
  • strawbear
  • strawbear
  • 2008年11月14日 23:22
  • 889

多视几何:齐次坐标

齐次坐标是多视几何的一个最最基本的概念,非常重要,可以说,几乎所有内容都以此为基础!这里,记录一下齐次坐标的相关内容 注:有些为个人理解,如有不对,还望指出为什么引入齐次坐标 直线的齐次表示 点的齐次...
  • tina_ttl
  • tina_ttl
  • 2016年10月09日 20:58
  • 686

齐次坐标的物理含义

常常会遇到齐次坐标,刚开始对于齐次坐标的存在比较困惑,经过一段时间的学习,对于齐次坐标有了更多的认识,在这里记录一下1.齐次坐标表示是计算机图形学的重要手段之一,它既能够用来明确区分向量和点,同时也更...
  • Echo_Master
  • Echo_Master
  • 2017年11月29日 18:32
  • 69

3D空间基础概念之一:点、向量(矢量)和齐次坐标

1.        点和向量的区别 点是三维空间中的某个坐标,是绝对的,它的值是参照原点的,而向量用于表示力和速度等具有方向和大小的量, 通常用具有长度和方向的线段来表示,虽然他们都具有三个分量,但...
  • yun_0_yun_
  • yun_0_yun_
  • 2017年03月28日 15:07
  • 852

平面射影几何——齐次坐标

在平面上的点可以用二维有序数组p˜=(x,y)T\widetilde p=(x, y)^T来表示,就是该点的欧氏坐标。平面上的直线方程可以表示为ax+by+c=0ax+by+c=0 (1)在方程...
  • Felaim
  • Felaim
  • 2017年07月02日 21:22
  • 458

齐次坐标&&四元数:

(一)齐次坐标: “齐次坐标表示是计算机图形学的重要手段之一,它既能够用来明确区分向量和点,同时也更易用于进行仿射(线性)几何变换。”—— F.S. Hill, JR。:   对于一个向量v以及...
  • weixin_35909255
  • weixin_35909255
  • 2017年08月07日 14:27
  • 223

关于OpenGL中的齐次坐标与投射几何

转自:http://www.tomdalling.com/blog/modern-opengl/explaining-homogenous-coordinates-and-projective-geo...
  • wurensen
  • wurensen
  • 2015年03月11日 18:00
  • 811
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:齐次坐标
举报原因:
原因补充:

(最多只允许输入30个字)