齐次坐标

原创 2016年08月28日 16:37:28
二维点(x,y)的齐次坐标表示为(hx,hy,h)。由此可以看出,一个向量的齐次表示是不唯一的,齐次坐标的h取不同的值都表示的是同一个点,比如齐次坐标(8,4,2)、(4,2,1)表示的都是二维点(4,2)。
给出点的齐次表达式[X Y H],就可求得其二维笛卡尔坐标,即
[X Y H]→
= [x y 1], 这个过程称为归一化处理。
在几何意义上,相当于把发生在三维空间的变换限制在H=1的平面内。
那么引进齐次坐标有什么必要,它有什么优点呢?
许多图形应用涉及到几何变换,主要包括平移、旋转、缩放。以矩阵表达式来计算这些变换时,平移是矩阵相加,旋转和缩放则是矩阵相乘,综合起来可以表示为p' = m1*p+ m2(注:因为习惯的原因,实际使用时一般使用变化矩阵左乘向量)(m1旋转缩放矩阵, m2为平移矩阵, p为原向量 ,p'为变换后的向量)。引入齐次坐标的目的主要是合并矩阵运算中的乘法和加法,表示为p' = p*M的形式。即它提供了用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系的有效方法。
其次,它可以表示无穷远的点。n+1维的齐次坐标中如果h=0,实际上就表示了n维空间的一个无穷远点。对于齐次坐标(a,b,h),保持a,b不变,|V|=(x1*x1,y1*y1,z1*z1)^1/2的过程就表示了标准坐标系中的一个点沿直线 ax-by=0 逐渐走向无穷远处的过程。
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

齐次坐标的理解【转】【精辟】

在博客园看到的文章,寥寥数语道明了之前我一直有的困惑,齐次坐标的基本原理也尽数说明,非常值得看看 http://www.cnblogs.com/csyisong/archive/2008/12/09/...

齐次坐标(Homogeneous coordinates)

此博文非原创,转自:http://blog.csdn.net/loop_k/article/details/5180755 博主个人推荐: http://www.songho.ca/math/hom...

齐次坐标,多视图几何,三维重建数学

本文是我对齐次坐标的一些理解,其中不免有一些错误,还希望大家多多指教。我的QQ是1332760808。 “齐次坐标表示是计算机图形学的重要手段之一,它既能够用来明确区分向量和点,同时也更易用于进行仿射...

齐次坐标问题

原文地址:http://www.cnblogs.com/kesalin/archive/2009/09/09/homogeneous.html 问题: 两条平行线会相交   铁轨...

关于OpenGL中的齐次坐标与投射几何

转自:http://www.tomdalling.com/blog/modern-opengl/explaining-homogenous-coordinates-and-projective-geo...

齐次坐标概念&&透视投影变换推导

齐次坐标概念&&透视投影变换推导 发表于: 2015-10-27   作者:互联网   来源:转载   浏览次数:3   透视投影是3D固定流水线的重要组成部分,是将相机空间中的点从视锥...

关于齐次坐标的理解(经典)

问题:两条平行线可以相交于一点 在欧氏几何空间,同一平面的两条平行线不能相交,这是我们都熟悉的一种场景。 然而,在透视空间里面,两条平行线可以相交,例如:火车轨道随着我们的视线越来越窄,最后两条平行线...
  • JANESTAR
  • JANESTAR
  • 2015年03月13日 19:17
  • 16457

计算机图形学的齐次坐标的理解

1什么是其次坐标。转自百度百科 http://baike.baidu.com/view/2132318.htm 所谓齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示。实数。显然一个向量的...

零基础开发OpenGL ES 2.0学习笔记-齐次坐标

一直对齐次坐标这个概念的理解不够彻底,只见大部分的书中说道“齐次坐标在仿射变换中非常的方便”,然后就没有了后文,今天在一个叫做“三百年 重生”的博客上看到一篇关于透视投影变换的探讨的文章,其中有对齐次...

也谈“齐次坐标”

“齐次坐标表示是计算机图形学的重要手段之一,它既能够用来明确区分向量和点,同时也更易用于进行仿射(线性)几何变换。”                                         ...
  • m9551
  • m9551
  • 2011年11月18日 15:30
  • 2010
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:齐次坐标
举报原因:
原因补充:

(最多只允许输入30个字)