bzoj2015 [Usaco2010 Feb]Chocolate Giving

18 篇文章 0 订阅

Description

Farmer John有B头奶牛(1<=B<=25000),有N(2*B<=N<=50000)个农场,编号1-N,有M(N-1<=M<=100000)条双向边,第i条边连接农场R_i和S_i(1<=R_i<=N;1<=S_i<=N),该边的长度是L_i(1<=L_i<=2000)。居住在农场P_i的奶牛A(1<=P_i<=N),它想送一份新年礼物给居住在农场Q_i(1<=Q_i<=N)的奶牛B,但是奶牛A必须先到FJ(居住在编号1的农场)那里取礼物,然后再送给奶牛B。你的任务是:奶牛A至少需要走多远的路程?

 

Input

  第1行:三个整数:N,M,B。

    第2..M+1行:每行三个整数:R_i,S_i和L_i,描述一条边的信息。

  第M+2..M+B+1行:共B行,每行两个整数P_i和Q_i,表示住在P_i农场的奶牛送礼物给住在Q_i农场的奶牛。

  

Output

  样例输出:

  共B行,每行一个整数,表示住在P_i农场的奶牛送礼给住在Q_i农场的奶牛至少需要走的路程

 

Sample Input

6 7 3

  1 2 3

  5 4 3

  3 1 1

  6 1 9

  3 4 2

  1 4 4

  3 2 2

  2 4

  5 1

  3 6


Sample Output

 6

 6

10

囧o(╯□╰)o

裸的spfa就过了,加了slf就wa……

求大神指导为什么

这样是可以A的

#include<cstdio>
#define inf 100000000
struct edge{
	int to,next,v;
}e[200010];
int dist[50010];
bool mrk[50010];
int q[1000010];
int head[50010];
int n,m,b,cnt,t,w;
inline void ins(int u,int v,int w)
{
	e[++cnt].to=v;
	e[cnt].v=w;
	e[cnt].next=head[u];
	head[u]=cnt;
}
inline void insert(int u,int v,int w)
{
	ins(u,v,w);
	ins(v,u,w);
}
inline void spfa(int S)
{  
    for (int i=2;i<=n;i++)dist[i]=inf;
    q[1]=S;mrk[S]=1;
    t=0;w=1;
    while (t<w)
    {  
        int now=q[++t];
        for (int i=head[now];i;i=e[i].next)  
          if (dist[e[i].to]>dist[now]+e[i].v)  
          {  
            dist[e[i].to]=dist[now]+e[i].v;  
            if (!mrk[e[i].to])  
            {  
                mrk[e[i].to]=1;
                q[++w]=e[i].to;
            }  
          }  
        mrk[now]=0;
    }
}
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int main()
{
	n=read();m=read();b=read();
	int x,y,z;
	for(int i=1;i<=m;i++)
	{
		x=read();y=read();z=read();
		insert(x,y,z);
	}
	spfa(1);
	for (int i=1;i<=b;i++)
	{
		x=read();y=read();
		printf("%d\n",dist[x]+dist[y]);
	}
	return 0;
}
加了slf就wa了

#include<cstdio>
#define inf 100000000
#define mod 50010
struct edge{
    int to,next,v;
}e[200010];
int dist[50010];
bool mrk[50010];
int q[50010];
int head[50010];
int n,m,b,cnt,t,w;
inline void ins(int u,int v,int w)
{
    e[++cnt].to=v;
    e[cnt].v=w;
    e[cnt].next=head[u];
    head[u]=cnt;
}
inline void insert(int u,int v,int w)
{
    ins(u,v,w);
    ins(v,u,w);
}
inline void spfa(int S)  
{  
    for (int i=1;i<=n;i++)mrk[i]=0;
    for (int i=1;i<=n;i++)dist[i]=inf;
    q[0]=S;mrk[S]=1;dist[S]=0;
    t=0;w=0;
    do
    {  
        int now=q[t];
        t=(t+1)%mod;
        for (int i=head[now];i;i=e[i].next)  
          if (dist[e[i].to]>dist[now]+e[i].v)  
          {  
            dist[e[i].to]=dist[now]+e[i].v;  
            if (!mrk[e[i].to])  
            {  
                mrk[e[i].to]=1;  
                if (dist[q[t]]>dist[e[i].to])
                {
                    t=(t-1+mod)%mod;
                    q[t]=e[i].to;
                }
                else
                {
                    w=(w+1)%mod;
                    q[w]=e[i].to;
                }
            }  
          }  
        mrk[now]=0;  
    }
    while (t!=w);
}  
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int main()
{
    n=read();m=read();b=read();
    int x,y,z;
    for(int i=1;i<=m;i++)
    {
        x=read();y=read();z=read();
        insert(x,y,z);
    }
    spfa(1);
    for (int i=1;i<=b;i++)
    {
        x=read();y=read();
        printf("%d\n",dist[x]+dist[y]);
    }
    return 0;
}


题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值