图像处理DOG 算法,python结合cv2实现

原创 2016年05月31日 17:47:43

DoG (Difference of Gaussian)是灰度图像增强和角点检测的方法

#coding=utf-8
import cv2
import numpy as np


def  getExtrema(A, B, C, thresh):
    height,width= A.shape
    resu = np.ones((height, width), A.dtype) * 100
    for row in range(1, height-1):
        for col in range(1, width-1):
            center = B[row, col]
            if center < thresh:
                continue
            B[row, col] = B[row, col - 1]
            minValue = np.vstack([A[row-1:row+2, col-1:col+2], B[row-1:row+2, col-1:col+2],C[row-1:row+2, col-1:col+2]]).min()
            maxValue = np.vstack([A[row - 1:row + 2, col - 1:col + 2], B[row - 1:row + 2, col - 1:col + 2],
                                  C[row - 1:row + 2, col - 1:col + 2]]).max()
            if center < minValue:
                resu[row, col] = 0
            if center > maxValue:
                resu[row, col] = 255
            B[row, col] = center
    return resu

def addPoint(image, image_point):
    height, width, dvim = image.shape
    for row in range(0, height):
        for col in range(0, width):
            if image_point[row, col] == 255:
                cv2.circle(image, (row, col), 5, thickness=1, color=[0,0,255])
            elif image_point[row, col] == 0:
                cv2.circle(image, (row, col), 5, thickness=1, color=[0,255,0])


if  __name__ == "__main__":
    image = cv2.imread('lena.jpg')
    r,g,b = cv2.split(image)
    image_gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
    image_gray_blur1 = cv2.GaussianBlur(image_gray, (3, 3), 0.3)
    image_gray_blur2 = cv2.GaussianBlur(image_gray, (3, 3), 0.4)
    image_gray_blur3 = cv2.GaussianBlur(image_gray, (3, 3), 0.5)
    image_gray_blur4 = cv2.GaussianBlur(image_gray, (3, 3), 0.6)
    image_gray_blur5 = cv2.GaussianBlur(image_gray, (3, 3), 0.7)
    image_gray_blur6 = cv2.GaussianBlur(image_gray, (3, 3), 0.8)
    image_gray_dog1 = image_gray_blur2 - image_gray_blur1
    image_gray_dog2 = image_gray_blur4 - image_gray_blur3
    image_gray_dog3 = image_gray_blur6 - image_gray_blur5
    image_point = getExtrema(image_gray_dog1, image_gray_dog2, image_gray_dog3, 2)
    #反过来的gbr
    cv2.namedWindow("image_DOG", flags= cv2.WINDOW_NORMAL)
    cv2.moveWindow("image_DOG", 300, 200)
    addPoint(image, image_point)
    cv2.imshow("image", cv2.imread("./lena.jpg"))
    cv2.imshow("image_gray", image_gray)
    cv2.imshow("image_gray_blur1", image_gray_blur1)
    cv2.imshow("image_gray_blur2", image_gray_blur2)
    cv2.imshow("image_gray_blur3", image_gray_blur3)
    cv2.imshow("image_gray_blur4", image_gray_blur4)
    cv2.imshow("image_gray_blur5", image_gray_blur5)
    cv2.imshow("image_gray_blur6", image_gray_blur6)
    cv2.imshow("image_gray_dog1", image_gray_dog1)
    cv2.imshow("image_gray_dog2", image_gray_dog2)
    cv2.imshow("image_gray_dog3", image_gray_dog3)
    cv2.imshow("image_DOG", image)

    cv2.imwrite("image_gray.jpg", image_gray,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_blur1.jpg", image_gray_blur1,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_blur2.jpg", image_gray_blur2,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_blur3.jpg", image_gray_blur3,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_blur4.jpg", image_gray_blur4,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_blur5.jpg", image_gray_blur5,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_blur6.jpg", image_gray_blur6,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_dog1.jpg", image_gray_dog1,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_dog2.jpg", image_gray_dog2,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_dog3.jpg", image_gray_dog3,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_DOG.jpg", image,[int(cv2.IMWRITE_JPEG_QUALITY), 100] )


    cv2.waitKey(0)
    cv2.destroyAllWindows()

ean.jpg lean.jpg


image_gray.jpg 这里写图片描述


image_gray_blur1.jpg 这里写图片描述


image_gray_blur2.jpg 这里写图片描述


image_gray_blur3.jpg 这里写图片描述


image_gray_blur4.jpg 这里写图片描述


image_gray_blur5.jpg 这里写图片描述


image_gray_blur6.jpg 这里写图片描述


image_gray_dog1.jpg 这里写图片描述


image_gray_dog2.jpg 这里写图片描述


image_gray_dog3.jpg 这里写图片描述


image_DOG.jpg 这里写图片描述

相关文章推荐

用python简单处理图片(1):打开\显示\保存图像

一提到数字图像处理,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1、不开源,价格贵 2、软件容量大。一般3G以上,高版本甚至达5G以上。 3、只能做研究,不易转化成软件。 ...

python实现集成回归算法,包括随机森林,极端随机森林,梯度boosting算法

from sklearn.datasets import load_boston boston = load_boston() from sklearn.cross_validation impo...

DOG算子--------的特征提取(二)

DOG(Difference of Guassian):简称  高斯函数的差分,是灰度图像增强和角点检测的一种方法。                  (一)理论基础:        下面详细介绍DO...

Python-OpenCV 处理图像(一):基本操作 cv2

0x00. 图片读、写和显示操作 安装好 OpenCV 之后,首先尝试加载一张最简单的图片并显示出来,代码示例: 第一种方式使用cv2.cv的LoadImage、ShowImage和SaveIma...
  • jqw11
  • jqw11
  • 2017年06月28日 09:15
  • 1087

数字图像处理基本算法实现(2)--section3.3直方图处理

从上一个section3.2到现在又过去一段时间了,断断续续终于把section3.3的直方图那些事弄出来了,还是那样:不求速度与健壮性,但求自己取实现一下,尽量自己去写代码,不用现成的函数。   ...
  • ljbsdu
  • ljbsdu
  • 2012年04月19日 19:28
  • 1638

关于computer view(CV)的几点认识-数字图像处理

当今科技越来越追求智能科技,CV大约从十年前就逐渐开始迅速发展,直至今日的火爆。就我本人的视角来看,CV从原始的基于数字图像处理渐渐发展为了采用机器学习、深度学习等综合性的学科。下面逐步分析我对此的几...
  • ds1231h
  • ds1231h
  • 2017年07月25日 11:08
  • 268

基于VC++实现图像处理算法2

  • 2010年11月06日 11:19
  • 3.67MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:图像处理DOG 算法,python结合cv2实现
举报原因:
原因补充:

(最多只允许输入30个字)