图像处理DOG 算法,python结合cv2实现

原创 2016年05月31日 17:47:43

DoG (Difference of Gaussian)是灰度图像增强和角点检测的方法

#coding=utf-8
import cv2
import numpy as np


def  getExtrema(A, B, C, thresh):
    height,width= A.shape
    resu = np.ones((height, width), A.dtype) * 100
    for row in range(1, height-1):
        for col in range(1, width-1):
            center = B[row, col]
            if center < thresh:
                continue
            B[row, col] = B[row, col - 1]
            minValue = np.vstack([A[row-1:row+2, col-1:col+2], B[row-1:row+2, col-1:col+2],C[row-1:row+2, col-1:col+2]]).min()
            maxValue = np.vstack([A[row - 1:row + 2, col - 1:col + 2], B[row - 1:row + 2, col - 1:col + 2],
                                  C[row - 1:row + 2, col - 1:col + 2]]).max()
            if center < minValue:
                resu[row, col] = 0
            if center > maxValue:
                resu[row, col] = 255
            B[row, col] = center
    return resu

def addPoint(image, image_point):
    height, width, dvim = image.shape
    for row in range(0, height):
        for col in range(0, width):
            if image_point[row, col] == 255:
                cv2.circle(image, (row, col), 5, thickness=1, color=[0,0,255])
            elif image_point[row, col] == 0:
                cv2.circle(image, (row, col), 5, thickness=1, color=[0,255,0])


if  __name__ == "__main__":
    image = cv2.imread('lena.jpg')
    r,g,b = cv2.split(image)
    image_gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
    image_gray_blur1 = cv2.GaussianBlur(image_gray, (3, 3), 0.3)
    image_gray_blur2 = cv2.GaussianBlur(image_gray, (3, 3), 0.4)
    image_gray_blur3 = cv2.GaussianBlur(image_gray, (3, 3), 0.5)
    image_gray_blur4 = cv2.GaussianBlur(image_gray, (3, 3), 0.6)
    image_gray_blur5 = cv2.GaussianBlur(image_gray, (3, 3), 0.7)
    image_gray_blur6 = cv2.GaussianBlur(image_gray, (3, 3), 0.8)
    image_gray_dog1 = image_gray_blur2 - image_gray_blur1
    image_gray_dog2 = image_gray_blur4 - image_gray_blur3
    image_gray_dog3 = image_gray_blur6 - image_gray_blur5
    image_point = getExtrema(image_gray_dog1, image_gray_dog2, image_gray_dog3, 2)
    #反过来的gbr
    cv2.namedWindow("image_DOG", flags= cv2.WINDOW_NORMAL)
    cv2.moveWindow("image_DOG", 300, 200)
    addPoint(image, image_point)
    cv2.imshow("image", cv2.imread("./lena.jpg"))
    cv2.imshow("image_gray", image_gray)
    cv2.imshow("image_gray_blur1", image_gray_blur1)
    cv2.imshow("image_gray_blur2", image_gray_blur2)
    cv2.imshow("image_gray_blur3", image_gray_blur3)
    cv2.imshow("image_gray_blur4", image_gray_blur4)
    cv2.imshow("image_gray_blur5", image_gray_blur5)
    cv2.imshow("image_gray_blur6", image_gray_blur6)
    cv2.imshow("image_gray_dog1", image_gray_dog1)
    cv2.imshow("image_gray_dog2", image_gray_dog2)
    cv2.imshow("image_gray_dog3", image_gray_dog3)
    cv2.imshow("image_DOG", image)

    cv2.imwrite("image_gray.jpg", image_gray,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_blur1.jpg", image_gray_blur1,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_blur2.jpg", image_gray_blur2,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_blur3.jpg", image_gray_blur3,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_blur4.jpg", image_gray_blur4,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_blur5.jpg", image_gray_blur5,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_blur6.jpg", image_gray_blur6,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_dog1.jpg", image_gray_dog1,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_dog2.jpg", image_gray_dog2,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_gray_dog3.jpg", image_gray_dog3,[int(cv2.IMWRITE_JPEG_QUALITY), 100])
    cv2.imwrite("image_DOG.jpg", image,[int(cv2.IMWRITE_JPEG_QUALITY), 100] )


    cv2.waitKey(0)
    cv2.destroyAllWindows()

ean.jpg lean.jpg


image_gray.jpg 这里写图片描述


image_gray_blur1.jpg 这里写图片描述


image_gray_blur2.jpg 这里写图片描述


image_gray_blur3.jpg 这里写图片描述


image_gray_blur4.jpg 这里写图片描述


image_gray_blur5.jpg 这里写图片描述


image_gray_blur6.jpg 这里写图片描述


image_gray_dog1.jpg 这里写图片描述


image_gray_dog2.jpg 这里写图片描述


image_gray_dog3.jpg 这里写图片描述


image_DOG.jpg 这里写图片描述

OpenCV,马赛克 常用图像增强算法的实现

原文地址 http://blog.csdn.NET/kezunhai/article/details/41553097 好资料,没收了!!! 1、对数图像增强算法       对数图像增强是...
  • c2a2o2
  • c2a2o2
  • 2017年04月19日 22:10
  • 1050

matlab/python+opencv提取圆形鱼眼图片的有效区域

1、原图: 2、有效区域: 3、python+opencv代码: import cv2 #读取鱼眼图片 img = cv2.imread("fisheye.jpg") #转换为灰度图片 img_...
  • dengxf01
  • dengxf01
  • 2016年11月28日 09:40
  • 2268

【计算机视觉】SIFT中LoG和DoG比较

在实际计算时,三种方法计算的金字塔组数noctaves,尺度空间坐标,以及每组金字塔内的层数S是一样的。同时,假设图像为640*480的标准图像。...
  • xiaowei_cqu
  • xiaowei_cqu
  • 2014年06月03日 10:05
  • 22029

DOG算法,特征提取,opencv

DoG(Difference of Gaussian) DoG (Difference of Gaussian)是灰度图像增强和角点检测的方法,其做法较简单,证明较复杂,具体讲解如下: D...
  • Swimmy_GY
  • Swimmy_GY
  • 2016年01月19日 18:06
  • 1987

Python-OpenCV 处理视频(五): 运动方向判断

在检测出运动的物体之后,我还需要知道运动的方向,使用了上一节中的办法检测运动我发现很难去计算运动方向,开始考虑通过计算轮廓的中点的变化来实现,但是因为每次检测出得轮廓的数量不稳定,所以这个办法会让误差...
  • qq_26898461
  • qq_26898461
  • 2016年01月04日 10:21
  • 750

Python-OpenCV 处理视频(四): 运动检测

0x00. 平均值法 通过计算两帧图像之间变化了的像素点占的百分比,来确定图像中是否有动作产生。 这里主要用到 Absdiff 函数,比较两帧图像之间有差异的点,当然需要将图像进行一些处理,例如平...
  • qq_26898461
  • qq_26898461
  • 2016年01月04日 10:19
  • 1847

计算机视觉——DoG和LoG算子

计算机视觉—DoG和LoG算子 brycezou@163.com        阅读本文,需要有一定的数字图像处理基础,否则不太容易明白数学公式想要传达的物理意义。希望通过仅此一篇文章就能...
  • gnehcuoz
  • gnehcuoz
  • 2016年10月12日 01:32
  • 3681

图像处理特征不变算子系列之DoG算子(五)

本文在前续介绍的Moravec、Harris、SUSAN以及FAST特征点检测算法的基础上,介绍了高斯差分算子DoG。在介绍DoG之前,介绍了尺度空间以及拉普拉斯金字塔以及其他的相关知识;接着对DoG...
  • kezunhai
  • kezunhai
  • 2013年09月12日 00:24
  • 6871

【图像处理】空间域上的图像增强(sobel,LOG,DOG算子等)

空间域与傅里叶变化后的频域相对,是在实际的图像坐标空间中进行变换。在傅里叶变换中有f(x,y)F(u,v),前者位于空间域,后者位于频域。 一、全局图像增强,比如灰度变换和直方图调整。 二、局部增强,...
  • lpsl1882
  • lpsl1882
  • 2016年04月25日 18:33
  • 2019

数学之路-python计算实战(11)-机器视觉-图像增强

目录(?)[+] 在计算机领域中,灰度(Gray scale)数字图像是每个像素只有一个采样颜色的图像。这类图像通常显示为从最暗黑色到最亮的白色的灰度,尽管理论上这个采样可以任何颜色...
  • vola9527
  • vola9527
  • 2015年02月25日 14:59
  • 1378
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:图像处理DOG 算法,python结合cv2实现
举报原因:
原因补充:

(最多只允许输入30个字)